

CROATIAN OPEN COMPETITION IN

INFORMATICS 2012/2013

ROUND 2

SOLUTIONS

COCI 2012/2013 Task MORTADELA

2nd round, November 10th, 2012 Author: Nikola Dmitrović

Since mortadella prices are expressed in a nonstandardized format “X

dollars for Y grams”, we should first convert them to a format that we can

compare. One possible method is finding the price of a single gram of

mortadella. It can be obtained by dividing the price with the mass. Finally,

we have to find the minimum price of one gram and multiply it by 1000. The

pseudocode is given below:

read(XNSC,YNSC);

 read(n);

 price:=XNSC/YNSC;

 for i:=1 to n do

 {

 read(Xi,Yi);

 if Xi/Yi<price then

 price:=Xi/Yi;

 };

 write(price*1000);

Necessary skills: input/output, for loop, finding minimum value

Category: ad-hoc

COCI 2012/2013 Task KRIZALJKA

2nd round, November 10th, 2012 Author: Adrian Satja Kurdija

We can use a triple-nested for loop to choose crossword rows in all possible

ways. Then we arrange them into a 3 by 3 matrix. The last remaining step is

checking whether the crossword columns match the remaining three words.

The simplest method for this is finding the three strings corresponding to the

matrix columns, sorting them lexicographically and comparing with the

remaining three strings from the input (which are already sorted

lexicographically).

There is another reason that makes the sorted order of the given words

convenient: as soon as we find a matching crossword, we can immediately

stop the search knowing that we have found the solution – provided that the

outermost for loop chooses the first word index in order from 1 to 6, the

middle one chooses the second word in the same order, and the innermost

one chooses the third word, again in the same order, it is easy to see that

the first matching crossword that we find will also be the first one

lexicographically.

Necessary skills: nested for loops, array/matrix manipulation, sorting

Category: strings

COCI 2012/2013 Task LANCI

2nd round, November 10th, 2012 Author: Gustav Matula

Consider the situation where we have L chains and K open links. If L - 1 ≤

K, we can use those K links to connect all the chains together (any two

chains can be connected using a single link, so we need L - 1 links to

connect L chains).

If L - 1 > K, we do not have a sufficient number of open links, so we need to

open more. If we open a link in the middle of a chain longer than three links,

we will increase the number of chains by 1, which is obviously not optimal.

Therefore, it is always best to remove links from either end of the chain.

Furthermore, if a chain consists of single link, opening it reduces the

number of chains by 1, which leads to a better solution. We conclude that it

is best to take new links from either end of the currently shortest available

chain, until we have enough open links (since the shortest chain will be the

first to be completely taken apart and thus reduce the chain count).

Necessary skills: mathematical problem analysis, greedy algorithms

Category: greedy algorithms

COCI 2012/2013 Task POPUST

2nd round, November 10th, 2012 Author: Goran Žužić

What does an optimal solution for a given K look like? There are two

possibilities:

1. K-1 meals with the lowest B price and one meal with the lowest A

price (out of the remaining meals)

2. K meals with the lowest B price, where one of them is chosen as first

(subtracting its B price and replacing it with the A price – obviously,

the one with the lowest Ai - Bi)

Let us sort the meals by ascending B prices and solve the problem

incrementally for K = 1, 2, …, N. We will keep the current sum of B prices

for the first K-1 meals (sorted by B). Also, using a structure (such as a C++

STL set) we will keep the remaining, unselected, meals sorted by A (to be

able to find the price of the first case), and another structure will keep the

selected meals, sorted by Ai - Bi (to be able to find the price of the second

case). The total complexity is O(N log N) if a structure query takes O(log N)

time.

Necessary skills: application of data structures (STL or a similar library in

another language, or a custom implementation)

Category: data structures, ad-hoc

COCI 2012/2013 Task INFORMACIJE

2nd round, November 10th, 2012 Author: Ivan Mandura

Let us build a bipartite graph with numbers on the left side and sequence

positions on the right. An edge between nodes (x, y) exists by default,

except if the provided descriptions make it impossible for number x to be

in position y.

Each number can only appear in the intersection of all intervals describing

that number, whether defining it as a local minimum or maximum.

Furthermore, we can determine for each position the range of numbers that

can be placed in it. We will only consider intervals whose lower bound is less

than or equal to the current position, and the right bound greater or equal.

Possible numbers in that position range from the largest local minimum to

the smallest local maximum of those intervals.

For an edge (x, y) to exist, the position y must be in the intersection of all

intervals for x, and x must be in the allowed range for position y.

The only remaining problem is selecting a set of edges such that each

number is assigned to exactly one position. It can be solved using a

flow/matching algorithm. The problem has sufficiently small bounds to be

solvable for all points even using the Ford-Fulkerson method.

Necessary skills: matching/flow algorithms

Category: graph theory

COCI 2012/2013 Task INSPEKTOR

2nd round, November 10th, 2012 Author: Ivan Katanić

Basic idea:

Let us divide the offices into N/K blocks such that each block contains K

consecutive offices. If the companies inside a block are organized in a

certain data structure (which we will describe later), moving a company in or

out can be accomplished by changing a single block, that is, with complexity

O(structure_delete + structure_insert). Mirko's stroll from A to B can be

solved by manually checking the ending portions of the interval [A, B] which

do not form a complete block (there will be at most 2*(K-1) such checks),

and solving the remaining blocks, that are completely contained in [A, B]

(there are at most N/K such blocks), by querying the corresponding

structures. The total complexity of a stroll is then O(2*(K-1) +

(N/K)*structure_query). In the complexity formulas above, „structure_X‟

represents the complexity of operation X on the data structure.

The data structure:

Let us begin by calculating the account balance of company i on day t:

 Si,t = (t - Ti)*Zi + Si = t*Zi + (Si - Ti*Zi)

Notice that the function mapping time to balance is linear, so our structure

needs to support queries to find the line with the largest y value for a given

x coordinate (in our case, t).

This can be done by constructing an upper convex hull of the lines and then

using ternary search to find the maximum value for a given x.

However, since the x value (time) in consecutive queries is increasing, the

maximum-valued line „role‟ will also move from left to right, so it is sufficient

to keep a pointer to the currently maximum-valued line and, given a new x,

increment it while the next line to the right has a greater value for x.

In order to construct an upper convex hull out of the lines in time O(K),

where K is the number of lines, we need to have the lines sorted by the

coefficient multiplying x (the slope).

Therefore, our structure will keep track of:

 1. the sorted array of lines,

 2. the upper convex hull formed by those lines,

 3. the pointer to the currently maximum-valued line.

Deleting and inserting a line is done by traversing the sorted array, adding

the new line and deleting the old one, which can both be done in O(K). After

that, we reconstruct the convex hull and reset the pointer to the first line in

the hull.

The complexity of a single query cannot be predicted since it depends on the

position of the pointer on the hull, but we can be certain that the pointer will

be incremented at most K times (until it reaches the last line) before the

next convex hull rebuild, which resets it. Therefore, if Pi is the number of

pointer resets (i.e. insert and delete queries), the total complexity of all

queries on block i is O(K*(Pi + 1)) = O(K*Pi).

Total complexity:

Each operation of moving a company in (and moving the existing company

out) requires changing a single block with complexity O(K), while the total

complexity of all queries is the sum of query complexities for all blocks: O(

K*P1 + K*P2 + … + K*PN/K). Since the sum of Pi is at most M, the

complexity equals O(M*K). The total complexity is then O(M*K + M*N/K

+ M*K); if we select K = sqrt(N), this equals O(M*sqrt(N)).

Necessary skills: block manipulation, linear geometry

Category: data structures, geometry

