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COCI 2012/2013 Task DOM 

1st round, October 20th, 2012 Author: Adrian Satja Kurdija 

 
Using a for loop, we traverse the input string and output each letter if 

it is neither „C‟, nor „A‟, nor „M‟, nor „B‟, nor „R‟, nor „I‟, nor „D‟, nor „G‟, 

nor „E‟. 

If we want to avoid writing nine conditions, we can use a variable 

containing the string CAMBRIDGE and a nested loop over that string 

checking whether any letter matches the current letter from the input 

string. 

 

Necessary skills: for loop, string manipulation, branching 

 
Category: strings 

 
 

 



 

COCI 2012/2013 Task F7 

1st round, October 20th, 2012 Author: Nikola Dmitrović 

 
Let us sort the drivers in descending points order and select the Kth 

driver in that sorted order. We need to determine whether (s)he can 

be the World Champion. 

We can construct the best possible final race scenario for that driver. 

In such a race, (s)he would earn N points, while the current champion 

would earn only 1 point, the current runner-up only 2 points and so 

on. Generally, the driver in position p < K earns p points; drivers in 

positions p > K are irrelevant since they cannot have more points than 

driver K in the constructed scenario. 

Can driver K be the World Champion in this scenario? The answer is 

„yes‟ if (s)he has a sum greater than all other drivers, that is, if the 

relation 

a[K] + N ≥ max{ a[1] + 1, a[2] + 2, …, a[K - 1] + K - 1 } 

is satisfied, where a[p] is the number of points that driver p in the 

descending sequence had before the final race. 

The solution that computes the maximum above (let us denote it by 

mx(K)) for every K from scratch has complexity O(N2), which is too 

slow. Fortunately, the maximum is simple to compute gradually as 

needed: whenever the observed K is incremented, we can compare 

the previous maximum value with the current point value and update 

the maximum if needed. To formalize, 

mx(K + 1) = max{ mx(K), a[K] + K } 

This reduces the complexity of finding the solution to O(N). The total 

complexity is O(N log N) because of sorting. 

 

Necessary skills: mathematical problem analysis 
 

Category: ad-hoc 

 
 

 
 



 

COCI 2012/2013 Task KONCERT 

1st round, October 20th, 2012 Author: Goran Gašić 

 
Notice that the solution is trivial if the number of tickets is greater 

than or equal to the number of guys. We can simply use a sequence of 

give commands until each guy has a ticket. After that, all guys can 

enter. 

Otherwise, the key observation is: if there are at least two tickets, two 

people can enter the venue. After that, one person can give their ticket 

to the other, who can then exit the venue. After this sequence, there is 

one more person in the venue, while there are still at least two tickets 

outside. 

It follows that we can choose a guy or girl to act as a “courier”, i.e. 

enter the venue with other guys, take their tickets and give them to 

guys outside. We can repeat this procedure until all guys are in the 

venue, perhaps save for the courier (if a male one was chosen), who 

can simply enter with the ticket(s) he has. 

 
Necessary skills: algorithm design 

 
Category: ad-hoc 

 
 

 

 



 

COCI 2012/2013 Task LJUBOMORA 

1st round, October 20th, 2012 Author: Adrian Satja Kurdija 

 
Let X be the lowest possible envy level, and Mx the largest number of 

marbles of a single color. It is not difficult to show that for all numbers 

Y between X and Mx, inclusive, we can attain an envy level of Y. 

It follows that binary search can be used to find the requested solution 

X. We can begin with the lower bound of 1 and upper bound of Mx. In 

each step, for a number Y halfway between the current bounds, we 

can check whether it is larger or smaller than X, i.e. whether it is 

possible to attain an envy level of Y. 

How can we check that? We can iterate over all colours and divide 

each of them into as many portions of size Y as possible. More 

precisely, if we have K marbles of a given colour, we will make K div Y 

portions of size Y, as well as one more portion if we have any leftover 

marbles (if Y does not divide K). After we have distributed all colours 

in the manner above, if the total number of portions is at most N, we 

have successfully attained an envy level of Y, concluding Y ≥ X. 

Otherwise, we have to conclude Y < X, since we have made too many 

portions, which means that at least one child must get more than Y 

marbles. 

 
Necessary skills: binary search 

 
Category: binary search 

 

 
 

 



 

COCI 2012/2013 Task SNAGA 

1st round, October 20th, 2012 Author: Adrian Satja Kurdija 

 
An important observation is that, for any large N, the following 

number in the sequence – the smallest positive integer that doesn't 

divide it – is very small. Thus, there are very few possible numbers 

following any large number, hence it is natural to approach the 

problem as follows: for each of the possible followers K we can count 

the numbers between A and B followed by K, making it easy to 

compute the sum of their strengths – they al have a strength of 

strength(K) + 1. 

How can we count the numbers for a given K? What are the conditions 

for a number N to be followed by K? It has to be divisible by all 

numbers less than K (otherwise one of them would be the follower of 

N), which means it is also divisible by their least common multiple, 

LCM(1, 2, …, K – 1). Furthermore, it must not be divisible by K itself. 

These two conditions are obviously both necessary and sufficient. 

Thus, let us count the numbers between A and B divisible by LCM(1, 

2, …, K - 1). From that number we need to subtract the numbers 

divisible by K. The numbers in the intersection of the two sets 

(divisible by both LCM(1, 2, …, K - 1) and K) are also divisible by 

LCM(1, 2, …, K - 1, K), so it is easy to find and subtract their count 

between A and B. Generally, we can count the numbers between A 

and B (inclusive) divisible by D using the formula (think about why it 

is correct): B div D - (A - 1) div D. 

Finally, for which numbers K do we need to carry out the computation? 

From the discussion above, it is obvious that as soon as LCM(1, 2, …, 

K - 1) becomes greater than B, we are done: there are no numbers 

between A and B with such (or any greater) K (since they aren't 

divisible by LCM(1, 2, …, K – 1), being smaller than it). It turns out 

that the largest K will be less than 50. It is easy to compute the 

strength for such K, increment it by 1 and add it to the total sum as 

many times as there are numbers between A and B whose follower is 

K. 

The last thing to consider is calculating LCM(1, 2, …, K - 1, K). Notice 

that 



LCM(1, 2, …, K - 1, K) = LCM( LCM(1, 2, …, K - 1), K ), 

so if we have calculated V = LCM(1, 2, …, K – 1) in the previous step, 

then LCM(V, K) can be obtained using the formula V * K / GCD(V, K), 

which is valid for any two positive integers. GCD, the greatest common 

divisor, is easily obtained using Euclid's algorithm. 

In the accompanying code, the LCM was computed using a different 

method. It is also worth taking a look at snaga_alternative.cpp which 

has a completely different solution. 

 

Necessary skills: mathematical problem analysis 
 

Category: number theory 
 

 
 

 



 

COCI 2012/2013 Task MARS 

1st round, October 20th, 2012 Author: Adrian Satja Kurdija 

 
We will describe two solutions based on dynamic programming. 

For the purposes of both solutions, we will call sets of positions in the 

sequence {1, 2}, {3, 4}, {5, 6}, … the 2-structures, sets {1, 2, 3, 4}, 

{5, 6, 7, 8}, … the 4-structures, sets {1, 2, 3, 4, 5, 6, 7, 8}, … the 8-

structures and so on. Two bacteria in the same 2-structure will be 

called siblings; if they are not siblings, but are in the same 4-

structure, we'll call them first cousins; if they are neither siblings nor 

first cousins, we'll call them second cousins etc. 

 

The first solution (devised by Luka Kalinovčić while solving COCI) 

Imagine that we are adding bacteria into the sequence from left to 

right; then the state is described by the position in the sequence and 

the number of the bacterium placed in that position. 

At first glance, these two parameters appear insufficient, but it can be 

shown that they are in fact sufficient. Let p and p + 1 be two adjacent 

positions in the sequence, with a bacterium marked prev placed in 

position p. Let us show that we can, without knowledge about the rest 

of the sequence constructed before position p, unambiguously 

determine which bacteria are candidates for placement in position p + 

1 (thus giving us the set of possible following states, making the state 

transition in dynamic programming possible). With that goal, let us 

consider the following cases: 

1) p and p + 1 are in the same 2-structure. It is clear that the only 

candidate for p + 1 is the sibling of prev. 

2) Case 1) doesn't apply, but p and p + 1 are in the same 4-structure. 

Here candidates for position p + 1 are the two first cousins of prev. 

3) None of the previous cases apply, but p and p + 1 are in the same 

8-structure. Here candidates for position p + 1 are the four second 

cousins of prev. 

... 



K) None of the previous cases apply, but p and p + 1 are in the same 

2K-structure (spanning all positions). Here candidates for position p + 

1 are the 2K - 1 most distant cousins of prev. 

Notice that this reasoning leads to the exact set of candidates for the 

next position, since none of the candidates could have been used 

before (take a moment to think and convince yourself). 

The complexity of the algorithm is the number of states, O(N2), 

multiplied by the transition complexity (number of candidates), which, 

at first glance, totals O(N3). Since the number of candidates is 1 in ½ 

of cases, 2 in ¼ of cases, 4 in ⅛ of cases and so on, the actual 

complexity is even lower: O(N2 log N). 

 

The second solution 

Let dp(L, R) be the smallest possible length of a subsequence starting 

with bacterium L, ending with bacterium R, and including precisely the 

bacteria which are descendants of the first (lowest) common ancestor 

of L and R (denoted by LCA(L, R)). The agenda is as follows: 

1) Compute dp(L, R) for all L, R that are siblings. 

2) Compute dp(L, R) for all L, R that are first cousins. 

3) Compute dp(L, R) for all L, R that are second cousins. 

... 

K) Compute dp(L, R) for all L, R that are most distant cousins. 

The final result will, of course, be the smallest of the numbers 

obtained in the last, Kth step, since they cover all sequences containing 

all 2K bacteria. 

Let us denote with rep(x, y) the repulsion between bacteria x and y. 

dp values in the first step are trivial to obtain, since dp(L, R) = rep(L, 

R). Other steps are a bit more complex, so bear with us. 

For given L and R, we can try out all selections of bacteria a and b 

that “divide structures L and R”, i.e. are exactly in the middle of the 

subsequence we're building between L and R, where a is the cousin 

closer to L than R, while b is the cousin closer to R than L. They 

cannot be too close cousins, since we have to fit half of all 

descendants of LCA(L, R) between L and a, and analogously for b – in 



other words, LCA(L, a) and LCA(b, R) must be the two children of 

LCA(L, R). 

For fixed L, R, and a selection of bacteria a and b, the smallest 

possible length of the segment between L and R is obviously 

dp(L, a) + rep(a, b) + dp(b, R). 

Therefore, dp(L, R) is equal to the minimum of this expression over all 

valid choices of bacteria a and b. 

We need to find a fast method of computing this transition. If, for 

given L and R, we select some bacterium a, we need to minimize 

rep(a, b) + dp(b, R) 

for all legal choices of b. Notice that this minimum doesn't depend on 

L. Let us denote it by best(a, R). 

We can thus, before computing values of dp for the current step, 

precompute values of best needed for that step (where best(a, R) is 

obtained by trying out all valid values of b) and then use the best 

values to obtain dp values for that step more efficiently. 

The complexity is obtained by summing the complexity for computing 

best values and for computing dp values. Both are at most O(N3) 

since they compute O(N2) values, each of which requires one for loop. 

Since this loop is often short because of relatively few valid choices, 

mathematically inclined readers are encouraged to determine whether 

this complexity is really O(N3) or somewhat smaller, as in the previous 

solution. 

 
Necessary skills: dynamic programming, binary trees 

 
Category: dynamic programming 


