

CROATIAN OPEN COMPETITION IN
INFORMATICS

Round 5

SOLUTIONS

COCI 2011/2012 Task KRIŽALJKA

Round 5, March 17th, 2012 Author: Bruno Rahle

The first part of the solution is detecting the first letter of word A that also

appears in word B. It can be solved simply using two nested for-loops (the
outer one to iterate over letters of A, the inner one over letters of B). A

useful side-effect of such a solution is that the first found letter pair will be
the two first (leftmost) such letters in their respective words, i.e. we will

have automatically obtained the indices of the word intersection.

After finding the word intersection, we need to output the crossed words.
The simplest method is, again, using two nested for-loops, the outer one

iterating over indices of B, and the inner one over indices of A. On every
iteration of the inner loop, we simply check whether we need to output a

letter of B or a letter of A, or none of them (in which case we output a dot).

Required skills: for-loop, strings

Category: ad-hoc, strings

COCI 2011/2012 Task EKO

Round 5, March 17th, 2012 Author: Adrian Satja Kurdija

A naive solution is to try all possible sawblade heights, from lowest to
highest or vice versa, until the correct height is found. We can simply try a

height value by iterating over all trees and summing the cut-off parts. This
algorithm has complexity O(N * max_height), which is too slow.

A faster solution can be obtained by reducing the number of heights that we

need to try. Let us assume that we have tried out a height of H’, cutting off
less than M metres of wood. This result implies that the needed height H is

less than H’. Conversely, if by cutting at a height of H’’ we obtained at least
M metres of wood, the needed height H must be greater than or equal H’’.

The natural algorithm to apply here is binary search: we keep the upper and

lower bound of the possible height interval, and in each step we try a height
H’ in the middle of that interval and, depending on the result, reduce the

search interval to the upper or lower half.

The problem can also be solved by sorting the tree heights from highest to

lowest, setting the cutoff height to the highest tree height and gradually
lowering it to the height of each lower tree until cutting off at least M metres

of wood. Detailed analysis of this approach is left as an exercise to the
reader.

Required skills: arrays, binary search

Category: binary search

COCI 2011/2012 Task DNA

Round 5, March 17th, 2012 Author: Adrian Satja Kurdija

This task can be solved using dynamic programming. Let f(K) be the smallest
number of mutations needed to convert the first K characters to A.

Conversely, let g(K) be the smallest number of mutations needed to convert
the first K characters to B.

If the Kth character is already equal to A, then obviously

f(K) = f(K-1).

On the other hand, if the Kth character is equal to B, we have two options:

1. Change the Kth characters using a first-type mutation, giving
f(K-1) + 1 mutations;

2. Change the prefix of length K (second-type mutation); in this case, we

first need to convert the first K-1 characters to B (in order to convert them

all to A using the prefix mutation), which requires g(K-1) mutations,
resulting in a total of

g(K-1) + 1 mutations.

Therefore, if the K-th character is equal to B, then
f(K) = min{ f(K-1) + 1, g(K-1) + 1 }.

We also need to derive analogous relations for g(K).

Now the problem can be easily solved by calculating f(1), g(1), f(2), g(2),

f(3), g(3) and so on until obtaining the result f(N).

The problem has another, simpler solution. We can iterate over the string
backwards, converting each encountered character to A. If we find an A, we

can simply continue. However, if we find a B, we have to decide which

mutation to use. It turns out that a correct strategy is to look at the
character in front of B. If A precedes the current B, then we convert only the

B, and if another B precedes the current B, we convert the whole prefix. The
proof of correctness of this algorithm, as well as a trick to quickly flip the

whole prefix, is left as an exercise to the reader.

Required skills: mathematical analysis

Category: dynamic programming

COCI 2011/2012 Task RAZBIBRIGRA

Round 5, March 17th, 2012 Author: Frane Kurtović

Notice that we don’t need the whole words to solve the problem, only the
first and last letter are important. Therefore, it is sufficient to memorize, for

each pair of letters, the number of words that begin and end with the
respective letters.

Now we can select all possible combinations of letters in the corners of the

square (264 possibilities). For each combination, we simply add the number
of possible squares with the respective corners.

On each edge, we can place any word starting and ending with the

appropriate letters. This word selection would always be independent if we
could use the same word multiple times in the same square. If the number of

possible words on the appropriate edges is denoted by A, B, C, and D, the
solution would be A*B*C*D (ignoring the fact that we cannot select the same

word multiple times).

However, if there are two edges requiring the same pair of beginning and

ending letters, for example if the first two edges satisfy that constraint, the
solution is A*(A-1)*C*D. It follows from the fact that we cannot choose from

all A words for the second edge since we have already used one word up for
the first edge.

By generalizing this result, we find that if K edges require the same pair of

beginning and ending letters, and we have A such words, we can select the K
edges in A*(A-1)*....*(A-K+1) ways.

The complexity of the solution, not counting input, is O(264).

Required skills: mathematical analysis

Category: combinatorics

COCI 2011/2012 Task BLOKOVI

Round 5, March 17th, 2012 Author: Anton Grbin

Let us observe a stable arrangement of rectangles. The stability condition
requires that the X-barycentre of all rectangles other than the lowest one has

distance of at most 1 unit from the X-centre of the lowest rectangle. If we
also factor in the mass of the lowest rectangle, we obtain the X-barycentre of

the whole arrangement which also has distance of at most 1 unit from the X-
centre of the lowest rectangle.

Let dx(S) be the difference of the x-coordinate of the rightmost point of

some rectangle in the arrangement S and the X-barycentre of the
arrangement. This value stays constant if the arrangement is translated

along the X-axis.

Let us denote a stable arrangement of the top k rectangles with Sk. We will
deem Sk as optimal if there exists no arrangement of the top k rectangles

with a larger dx value than Sk.

The required solution of the problem is dx(Sn-1) + 1, for some optimal Sn-1.

The optimal arrangements can be determined using dynamic programming.

For each state we memorize dx and the total mass M of the current optimal
arrangement.

The trivial case is S1, with values dx = 1, M = mass of the last rectangle in
input.

Determining Sj+1 from Sj:

The rectangle j+1 (counting from the top) is placed under the current
arrangement, with two possible cases:

● the X-barycentre of Sj coincides with the upper right corner of the new

rectangle

● the X-barycentre of Sj coincides with the upper left corner of the new
rectangle

We simply select the new arrangement with the larger dx value among the

two possibilities.

Required skills: understanding weighted averages, mathematical analysis

Category: dynamic programming

COCI 2011/2012 Task POPLOČAVANJE

Round 5, March 17th, 2012 Author: Filip Pavetić

Notice the following: if, for a given position i in the large word (the one

describing the street), we can find the longest short word (tile) that can be
placed starting at position i, the problem is reduced to finding the union of

intervals, which is solvable using a simple sweep.

The remaining problem is efficiently finding the longest tile for each position,
which can be done in one of the following ways:

a) suffix array

A large number of problems with strings, including this one, can be solved

using a suffix array. It is a sorted array of all suffixes of a string and can be
computed using multiple methods. The simplest one, with complexity

O(N log2 N), using hashing is sufficient for this problem.

It is important to notice that the indices of suffixes, whose prefix is one of

the given M words, are grouped together in a suffix array, forming a suffix
interval. This interval can be found using binary search for each word. After

finding all the intervals, we need to find, for each suffix, the longest of M
words whose interval covers that suffix, which can be found using sweep.

After that, another sweep can easily determine the tileable positions, using
the longest word that can be placed at each position.

There are other efficient solutions using hashing.

b) Aho-Corasick tree

The Aho-Corasick tree can be used to find many short words in a long one

using a single pass over the long word. The tree can be constructed with
complexity O(sum_of_short_word_lengths), while finding matches depends

on their number.

The basic idea behind the tree is well described in the following materials:
http://www.cbcb.umd.edu/confcour/CMSC858W-materials/Lecture4.pdf
http://www.cs.uku.fi/~kilpelai/BSA05/lectures/slides04.pdf

For the purposes of this problem, while building the tree, for each node we
can keep the data about the longest of the given short words that is a suffix

of the prefix represented by a particular node. Let M(x) denote that value for

node x. M(x) is then the maximum of:

http://www.cbcb.umd.edu/confcour/CMSC858W-materials/Lecture4.pdf
http://www.cbcb.umd.edu/confcour/CMSC858W-materials/Lecture4.pdf
http://www.cbcb.umd.edu/confcour/CMSC858W-materials/Lecture4.pdf
http://www.cbcb.umd.edu/confcour/CMSC858W-materials/Lecture4.pdf
http://www.cbcb.umd.edu/confcour/CMSC858W-materials/Lecture4.pdf
http://www.cbcb.umd.edu/confcour/CMSC858W-materials/Lecture4.pdf
http://www.cbcb.umd.edu/confcour/CMSC858W-materials/Lecture4.pdf
http://www.cbcb.umd.edu/confcour/CMSC858W-materials/Lecture4.pdf
http://www.cbcb.umd.edu/confcour/CMSC858W-materials/Lecture4.pdf
http://www.cbcb.umd.edu/confcour/CMSC858W-materials/Lecture4.pdf
http://www.cbcb.umd.edu/confcour/CMSC858W-materials/Lecture4.pdf
http://www.cbcb.umd.edu/confcour/CMSC858W-materials/Lecture4.pdf
http://www.cbcb.umd.edu/confcour/CMSC858W-materials/Lecture4.pdf
http://www.cbcb.umd.edu/confcour/CMSC858W-materials/Lecture4.pdf
http://www.cbcb.umd.edu/confcour/CMSC858W-materials/Lecture4.pdf
http://www.cbcb.umd.edu/confcour/CMSC858W-materials/Lecture4.pdf
http://www.cbcb.umd.edu/confcour/CMSC858W-materials/Lecture4.pdf
http://www.cbcb.umd.edu/confcour/CMSC858W-materials/Lecture4.pdf
http://www.cbcb.umd.edu/confcour/CMSC858W-materials/Lecture4.pdf
http://www.cbcb.umd.edu/confcour/CMSC858W-materials/Lecture4.pdf
http://www.cbcb.umd.edu/confcour/CMSC858W-materials/Lecture4.pdf
http://www.cs.uku.fi/~kilpelai/BSA05/lectures/slides04.pdf
http://www.cs.uku.fi/~kilpelai/BSA05/lectures/slides04.pdf
http://www.cs.uku.fi/~kilpelai/BSA05/lectures/slides04.pdf
http://www.cs.uku.fi/~kilpelai/BSA05/lectures/slides04.pdf
http://www.cs.uku.fi/~kilpelai/BSA05/lectures/slides04.pdf
http://www.cs.uku.fi/~kilpelai/BSA05/lectures/slides04.pdf
http://www.cs.uku.fi/~kilpelai/BSA05/lectures/slides04.pdf
http://www.cs.uku.fi/~kilpelai/BSA05/lectures/slides04.pdf
http://www.cs.uku.fi/~kilpelai/BSA05/lectures/slides04.pdf
http://www.cs.uku.fi/~kilpelai/BSA05/lectures/slides04.pdf
http://www.cs.uku.fi/~kilpelai/BSA05/lectures/slides04.pdf
http://www.cs.uku.fi/~kilpelai/BSA05/lectures/slides04.pdf
http://www.cs.uku.fi/~kilpelai/BSA05/lectures/slides04.pdf
http://www.cs.uku.fi/~kilpelai/BSA05/lectures/slides04.pdf
http://www.cs.uku.fi/~kilpelai/BSA05/lectures/slides04.pdf
http://www.cs.uku.fi/~kilpelai/BSA05/lectures/slides04.pdf
http://www.cs.uku.fi/~kilpelai/BSA05/lectures/slides04.pdf
http://www.cs.uku.fi/~kilpelai/BSA05/lectures/slides04.pdf
http://www.cs.uku.fi/~kilpelai/BSA05/lectures/slides04.pdf

- depth(x), if a short word ends in x

- M(failureLink(x)) *
*failureLink is described in the given materials

Building the tree still has complexity O(sum_of_short_word_lengths), while
the (since we are not interested in all match positions, but only the

maximum length for each position in the long word) complexity of searching
through the long word is linear in its length. When encountering a letter, we

try to descend down the tree. If it is not possible, we follow the failureLinks
until finding either a node which we can descend from, or the root of the

tree. In the node where we have ended up, we take the previous computed
maximum and set the interval bounds for the future sweep.

Required skills: suffix array, Aho-Corasick tree, sweepline

Category: strings, sweepline

