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COCI 2011/2012 Task KRIŽALJKA 

Round 5, March 17th, 2012  Author: Bruno Rahle 

 
The first part of the solution is detecting the first letter of word A that also 

appears in word B. It can be solved simply using two nested for-loops (the 
outer one to iterate over letters of A, the inner one over letters of B). A 

useful side-effect of such a solution is that the first found letter pair will be 
the two first (leftmost) such letters in their respective words, i.e. we will 

have automatically obtained the indices of the word intersection.  
 

After finding the word intersection, we need to output the crossed words. 
The simplest method is, again, using two nested for-loops, the outer one 

iterating over indices of B, and the inner one over indices of A. On every 
iteration of the inner loop, we simply check whether we need to output a 

letter of B or a letter of A, or none of them (in which case we output a dot). 
 

Required skills: for-loop, strings 

 
Category: ad-hoc, strings 

 



 

COCI 2011/2012 Task EKO 

Round 5, March 17th, 2012  Author: Adrian Satja Kurdija 

 

A naive solution is to try all possible sawblade heights, from lowest to 
highest or vice versa, until the correct height is found. We can simply try a 

height value by iterating over all trees and summing the cut-off parts. This 
algorithm has complexity O(N * max_height), which is too slow. 

 
A faster solution can be obtained by reducing the number of heights that we 

need to try. Let us assume that we have tried out a height of H’, cutting off 
less than M metres of wood. This result implies that the needed height H is 

less than H’. Conversely, if by cutting at a height of H’’ we obtained at least 
M metres of wood, the needed height H must be greater than or equal H’’. 

 
The natural algorithm to apply here is binary search: we keep the upper and 

lower bound of the possible height interval, and in each step we try a height 
H’ in the middle of that interval and, depending on the result, reduce the 

search interval to the upper or lower half. 

 
The problem can also be solved by sorting the tree heights from highest to 

lowest, setting the cutoff height to the highest tree height and gradually 
lowering it to the height of each lower tree until cutting off at least M metres 

of wood. Detailed analysis of this approach is left as an exercise to the 
reader. 

 
Required skills: arrays, binary search 

 
Category: binary search 

 



 

COCI 2011/2012 Task DNA 

Round 5, March 17th, 2012  Author: Adrian Satja Kurdija 

 

This task can be solved using dynamic programming. Let f(K) be the smallest 
number of mutations needed to convert the first K characters to A. 

Conversely, let g(K) be the smallest number of mutations needed to convert 
the first K characters to B. 

 
If the Kth character is already equal to A, then obviously 

f(K) = f(K-1). 
 

On the other hand, if the Kth character is equal to B, we have two options:  
 

1. Change the Kth characters using a first-type mutation, giving 
f(K-1) + 1 mutations; 

 
2. Change the prefix of length K (second-type mutation); in this case, we 

first need to convert the first K-1 characters to B (in order to convert them 

all to A using the prefix mutation), which requires g(K-1) mutations, 
resulting in a total of 

g(K-1) + 1 mutations. 
 

Therefore, if the K-th character is equal to B, then 
f(K) = min{ f(K-1) + 1, g(K-1) + 1 }. 

 
We also need to derive analogous relations for g(K). 

 
Now the problem can be easily solved by calculating f(1), g(1), f(2), g(2), 

f(3), g(3) and so on until obtaining the result f(N). 
 

The problem has another, simpler solution. We can iterate over the string 
backwards, converting each encountered character to A. If we find an A, we 

can simply continue. However, if we find a B, we have to decide which 

mutation to use. It turns out that a correct strategy is to look at the 
character in front of B. If A precedes the current B, then we convert only the 

B, and if another B precedes the current B, we convert the whole prefix. The 
proof of correctness of this algorithm, as well as a trick to quickly flip the 

whole prefix, is left as an exercise to the reader. 
 

Required skills: mathematical analysis 
 

Category: dynamic programming 



 

COCI 2011/2012 Task RAZBIBRIGRA 

Round 5, March 17th, 2012  Author: Frane Kurtović 

 

Notice that we don’t need the whole words to solve the problem, only the 
first and last letter are important. Therefore, it is sufficient to memorize, for 

each pair of letters, the number of words that begin and end with the 
respective letters. 

 
Now we can select all possible combinations of letters in the corners of the 

square (264 possibilities). For each combination, we simply add the number 
of possible squares with the respective corners. 

 
On each edge, we can place any word starting and ending with the 

appropriate letters. This word selection would always be independent if we 
could use the same word multiple times in the same square. If the number of 

possible words on the appropriate edges is denoted by A, B, C, and D, the 
solution would be A*B*C*D (ignoring the fact that we cannot select the same 

word multiple times). 

 
However, if there are two edges requiring the same pair of beginning and 

ending letters, for example if the first two edges satisfy that constraint, the 
solution is A*(A-1)*C*D. It follows from the fact that we cannot choose from 

all A words for the second edge since we have already used one word up for 
the first edge. 

 
By generalizing this result, we find that if K edges require the same pair of 

beginning and ending letters, and we have A such words, we can select the K 
edges in A*(A-1)*....*(A-K+1) ways. 

 
The complexity of the solution, not counting input, is O(264). 

   
Required skills: mathematical analysis 

 

Category: combinatorics 
 



 

COCI 2011/2012 Task BLOKOVI 

Round 5, March 17th, 2012  Author: Anton Grbin 

 

Let us observe a stable arrangement of rectangles. The stability condition 
requires that the X-barycentre of all rectangles other than the lowest one has 

distance of at most 1 unit from the X-centre of the lowest rectangle. If we 
also factor in the mass of the lowest rectangle, we obtain the X-barycentre of 

the whole arrangement which also has distance of at most 1 unit from the X-
centre of the lowest rectangle. 

 
Let dx(S) be the difference of the x-coordinate of the rightmost point of 

some rectangle in the arrangement S and the X-barycentre of the 
arrangement. This value stays constant if the arrangement is translated 

along the X-axis. 
 

Let us denote a stable arrangement of the top k rectangles with Sk. We will 
deem Sk as optimal if there exists no arrangement of the top k rectangles 

with a larger dx value than Sk. 

 
The required solution of the problem is dx(Sn-1) + 1, for some optimal Sn-1. 

 
The optimal arrangements can be determined using dynamic programming. 

For each state we memorize dx and the total mass M of the current optimal 
arrangement. 

The trivial case is S1, with values dx = 1, M = mass of the last rectangle in 
input. 

 
Determining Sj+1 from Sj: 

The rectangle j+1 (counting from the top) is placed under the current 
arrangement, with two possible cases: 

 
● the X-barycentre of Sj coincides with the upper right corner of the new 

rectangle 

● the X-barycentre of Sj coincides with the upper left corner of the new 
rectangle 

 
We simply select the new arrangement with the larger dx value among the 

two possibilities. 
 

Required skills: understanding weighted averages, mathematical analysis 
 

Category: dynamic programming 



COCI 2011/2012 Task POPLOČAVANJE 

Round 5, March 17th, 2012  Author: Filip Pavetić 

 

Notice the following: if, for a given position i in the large word (the one 

describing the street), we can find the longest short word (tile) that can be 
placed starting at position i, the problem is reduced to finding the union of 

intervals, which is solvable using a simple sweep. 
 

The remaining problem is efficiently finding the longest tile for each position, 
which can be done in one of the following ways: 

 
a) suffix array 

 
A large number of problems with strings, including this one, can be solved 

using a suffix array. It is a sorted array of all suffixes of a string and can be 
computed using multiple methods. The simplest one, with complexity  

O(N log2 N), using hashing is sufficient for this problem. 
 

It is important to notice that the indices of suffixes, whose prefix is one of 

the given M words, are grouped together in a suffix array, forming a suffix 
interval. This interval can be found using binary search for each word. After 

finding all the intervals, we need to find, for each suffix, the longest of M 
words whose interval covers that suffix, which can be found using sweep. 

After that, another sweep can easily determine the tileable positions, using 
the longest word that can be placed at each position. 

 
There are other efficient solutions using hashing. 

 
b) Aho-Corasick tree 

 
The Aho-Corasick tree can be used to find many short words in a long one 

using a single pass over the long word. The tree can be constructed with 
complexity O(sum_of_short_word_lengths), while finding matches depends 

on their number. 

 
The basic idea behind the tree is well described in the following materials: 
http://www.cbcb.umd.edu/confcour/CMSC858W-materials/Lecture4.pdf 
http://www.cs.uku.fi/~kilpelai/BSA05/lectures/slides04.pdf 

 

For the purposes of this problem, while building the tree, for each node we 
can keep the data about the longest of the given short words that is a suffix 

of the prefix represented by a particular node. Let M(x) denote that value for 

node x. M(x) is then the maximum of: 
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- depth(x), if a short word ends in x 

- M(failureLink(x)) * 
*failureLink is described in the given materials 

 

Building the tree still has complexity O(sum_of_short_word_lengths), while 
the (since we are not interested in all match positions, but only the 

maximum length for each position in the long word) complexity of searching 
through the long word is linear in its length. When encountering a letter, we 

try to descend down the tree. If it is not possible, we follow the failureLinks 
until finding either a node which we can descend from, or the root of the 

tree. In the node where we have ended up, we take the previous computed 
maximum and set the interval bounds for the future sweep. 

 
Required skills: suffix array, Aho-Corasick tree, sweepline 

 
Category: strings, sweepline 

 


