

CROATIAN OPEN COMPETITION IN
INFORMATICS

Round 4

SOLUTIONS

COCI 2011/2012 Task KINO

Round 4, February 18th, 2012 Author: Adrian Satja Kurdija

If there are no love seats, there are N+1 cup-holders. Every pair of

love seats decreases the number of cup-holders by one. We can
express this fact with the following formula:

 number_of_cup_holders = N + 1 - number_of_love_seat_pairs

The solution is to output the number of cup-holders, except when

there are no love seats in which case we output N.

Necessary skills: reading strings from input, for loop

Category: ad-hoc

COCI 2011/2012 Task ZIMA

Round 4, February 18th, 2012 Author: Bruno Rahle

First, we traverse the given day temperatures and locate the winter

periods. Every winter period starts with a negative number, and lasts
until a positive number is encountered.

If there is a winter period starting with day A and lasting T days, we

mark all days from A-2*T to A-1 (inclusive) in some boolean array.
This array tells us during which days are we allowed to anounce the

winter. We also keep track of the length of longest winter period so
far.

Finally, we must choose one of the longest winter periods and allow it’s

announcing 3*T days in advance. We do this by checking for each of
the longest periods by how much will our solution increase if we

choose that period, and then choosing the one that was optimal. This
checking is easy to do by using the same array of booleans as before.

Necessary skills: array manipulation

Category: ad-hoc

COCI 2011/2012 Task KEKS

Round 4, February 18th, 2012 Author: Ivan Katanić

After removing K digits from N-digit number, N-K digits will remain.

So we can rephrase the problem statement and say that we must

choose N-K digits that form the maximum possible number.

We will use greedy approach. We find the largest digit that still allows
us to add additional digits after it, and place it as the first digit of our

solution. We repeat this for second digit, and so on. If there are
multiple choices at any time, it’s easy to see that we can choose the

leftmost one without harming our best solution.

If we didn’t choose the largest possible digit at some point, we would
obviously end up with a smaller number instead, which means that our

algorithm is correct.

Necessary skills: math problem analysis

Category: greedy algorithm’s

COCI 2011/2012 Task OGRADA

Round 4, February 18th, 2012 Author: Ivan Katanić

Let’s mark the i-th smallest board that Mirko has with Ai, and i-th

board in the final arrangement with Ci.
The niceness of Mirko’s fence is equal to the sum of absolute

differences between adjacent boards:

|C1 - C2| + |C2-C3| + … + |CN-1 - CN|

Since we know the orderings of each two adjacent boards, this sum
can be rewritten without absolute values.

If we proceed to reduce this expression to canonical form, every Ci will
appear next to integer coefficient from interval [-2, 2].

If we put board A1 next to the smallest of these coefficients, A2 next to

the second smallest and so on, we would surely end up with the fence
as nice as possible.

Now we must arrange boards in this way, but also in a way that

assures that Mirko’s fence is similar to Slavko’s.

We use this algorithm:

1.) Coefficients +2 and -2. Boards with these
coefficients are larger (smaller) than both boards adjacent

to them. There are no adjacent positions with +2 (or -2)
coefficient, so we can go and place largest boards next to

+2’s, and smallest boards next to -2’s. It’s easy to see that
we won’t violate any constraint by doing this.

2.) Coefficients +1 and -1. Only the first and the last
board can have +1 or -1, so we put the largest board

that’s left from the first step next to +1 and the smallest
one next to -1.

3.) Coefficient 0. These boards are smaller than one

neighboor and larger than the other. By placing any of
these boards next to boards already positioned in steps 1

and 2, we won’t violate anything. So we only must be
careful when placing them next to one another.

Consecutive sequences of boards with coefficient 0 will be
either strictly increasing or strictly decreasing, depending

on adjacent boards at the begining and at the end of
sequence. We place them in any way that satisfies this

condition and we are done.

Necessary skills: math problem analysis

Category: ad-hoc

COCI 2011/2012 Task BROJ

Round 4, February 18th, 2012 Author: Goran Gašić

To solve this for large values of P we will use modification of the sieve

of Eratosthenes. Size of our sieve will be 109 / P. Integers in the sieve
represent multiples of P. During the execution of this algorithm we can

find smallest prime factors or mark only multiples of prime numbers
smaller than P as in the official solution.

For smaller values of P we can binary search through [1, 109 / P],

again looking at these numbers as the corresponding multiples of P.
For some number we must find the number of integers not greater and

relatively prime with that number. We can do this by using inclusion-
exclusion principle with prime numbers less than P.

With careful implementation this solution can work for much larger

values of P than requested for this subtask.

We can also solve this task for smaller value of P by making use of

periodic behaviour of smallest prime factors. Let A(n) be the smallest
prime factor of n, B(k) the k-th prime number, and T(k) the product

of first k primes. For A(n) ≤ B(k), A(n + T(k)) = A(n) holds. So it’s
enough to know A(n) for n ≤ T(k) in order to find the N-th prime

who’s smallest prime factor is B(k)

Necessary skills: sieve of Eratosthenes, inclusion-exclusion principle

Category: number theory, combinatorics

COCI 2011/2012 Task KRIPTOGRAM

Round 4, February 18th, 2012 Author: Goran Žužić

We can solve this task by modifying Knuth-Morris-Pratt (KMP) string

searching algorithm. Let’s introduce some notations.

● We will denote corresponding words of encrypted message with

A[1], A[2], …, A[n]. Also, A[x, y] will denote the sentence made
up of words A[x] through A[y]

● B[1], B[2], …, B[m] will be words from sentence of the original

text, and B[x,y] sentence made up of words B[x] through B[y]
● Let matches(A[x, x+L], B[y, y+L]) be boolean function telling us

whether A[x, x+L] can be decrypted into B[y, y+L]. For
example, matches(“a b a”, “c d c”) = true; matches(“a b b”, “x y

z”) = false.

As in standard KMP, we will calculate the prefix function P[1, 2, …, m],
but with slightly different meaning. P[x] will be equal to largest

possible L such that:

matches(B[1,L], B[x-L+1, x]) = True1

After finding P, we must find B within A. For each word in A we are
interested in largest suffix that corresponds to some prefix of B. If we

encounter a mismatch, we continue with the largest possible prefix of

B, which we lookup in P.

We must also find a way to efficiently evaluate matches function. We
will transform our messages using the following transformation:

 T(X)[i] = -1 if X[i] doesn’t appear in X[1, i-1]

 T(X)[i] = j if j is the largest index such that

j < i and X[j] = X[i]

By using A’ = T(A) i B’ = T(B) we can calculate matches in linear time
which is sufficient for obtaining the maximum number of points. Total

complexity is also linear.

Necessary skills: Knuth-Morris-Pratt algorithm

Category: string searching

1
 Only difference between this definition and the original one is that we use our

matches function instead of standard string comparision.

