

CROATIAN OPEN COMPETITION IN
INFORMATICS

Round 2

ALGORITHM DESCRIPTIONS

COCI 2011/2012 Task NAJBOLJIH 5

Round 2, November 19th, 2011 Author: Nikola Dmitrović

It is possible to solve this task in various ways. Expect for the most

obvious solution where one looks for the 5 wanted numbers with 5
nested loops, we could just search for the 3 numbers with minimum

sum and use 3 nested loops, which simplifies the code.

min=total; //sum of all numbers

for i=1 to 6 do
 for j=i+1 to 7 do

 for k=j+1 to 8 do
 if score[i]+score[j]+score[k] < min tada

 begin
 min:=score[i]+score[j]+score[k];

 first:=i;
 second:=j;

 third:=k;

 end;

print (total-min);

for i=1 to 8 do
 if (i != prvi) and (i != drugi) and (i != treci) then

 print (i);

Required skills: nested loops

Category: ad hoc

COCI 2011/2012 Task OKRET

Round 2, November 19th, 2011 Author: Adrian Satja Kurdija

There are dead-ends inside the given city if and only if there are road

surface cells that are adjacent to only one other road surface cell.

Let’s prove this. If there is a road surface cell (let’s call it A) that has
only one neighbor (B), then by moving from B to A we get stuck in A,

i.e. our only way out is by a 180 degrees turn, which means that
dead-end exists.

If there is no such cell, than we can exit every cell using some

direction other than the one by which we came in. Let’s start at some
road surface cell using any direction and proceed in the following

matter: leave the cell we are currently in by using direction other than
the one by which we came in. Since there are finite number of free

cells, we will sooner or later enter some cell which we already visited.
When this happens, one of these two statements are true: either we

returned to the starting point, or we can return to the starting point

using the same path. In both cases it’s possible to get back to the
starting point, which concludes our proof.

Described solution is very easily implemented: for each road surface

cell count the number of free cells.

Required skills: matrices manipulation
Category: ad hoc

COCI 2011/2012 Task ZADAĆA

Round 2, November 19th, 2011 Author: Ivan Katanić

Greatest common divisor of two integers can be defined as the product

of their common prime factors, as following:

A = p1a1 * p2a2 * … * pnan B = p1b1 * p2b2 * … * pnbn
GCD(A, B) = p1min(a1,b1) * p2min(a2,b2) * … * pnmin(an,bn)

where p1..pn are the prime factors and a1..an, b1..bn are

corresponding exponents.
We can get the factorization of large numbers A and B by factorizing

every of their given factors and summing the prime number exponents
over some prime in all factorizations. Next step is computing the GCD

using the expression given above. For details check out the attached
code.

Alternative solution would be to find GCD of all pairs of numbers Ai, Bj

and it to the result (multiply), and divide the numbers Ai, Bj with the

same number to prevent adding it to the result several times (in the
next iterations).

Required skills: factorization, prime numbers

Category: number theory

COCI 2011/2012 Task KOMPIĆI

Round 2, November 19th, 2011 Author: Adrian Satja Kurdija

First thing to notice is that for each of the input values only set of it’s
digits is of importance. We are not interested in order in which digits

appear or repetition of digits. Therefore, each value can be
represented with sequence of 10 binary digits - 1 if that digit is

present, and 0 if it isn’t.

There are at most 210 = 1024 different sequences. For each sequence,
we can easily calculate how many input values yield exactly that

sequence, and store these results into some array.

For each pair of sequences, it’s easy to tell if they share some digit -
they do if there is a position at which both sequences have ones. If

they don’t share a digit, there are no pals here. If they do, than we
can form a pair of pals by choosing any value that yields the first

sequence, and any value that yields the second sequence. Total

number of such pairs is:

number_of_values[sequence1] * number_of_values[sequence2].

Finally, we must count the number of pals that have the same
sequence:

number_of_values[sequence] * (number_of_values[sequence] - 1) / 2

We must go through every possible pair of sequences, so complexity is

O(10242).

Required skills: binary number system

Category: ad hoc

COCI 2011/2012 Task FUNKCIJA

Round 2, November 19th, 2011 Author: Goran Gašić

First observation we can make is that loops actually represent a
system of inequalities:

X1 ≤ a ≤ Y1

X2 ≤ b ≤ Y2

…

XN ≤ <N-to> ≤ YN

Solution to our problems is the number of integer solutions of the

given system of inequalities modulo 1000000007.

Lets build a graph with N nodes, each node representing one
inequality. From a node which represents inequality of var1 we’ll put

an edge towards node of var2 if upper or lower bound of var2 is equal
to the same-kind bound of var1.

This graph is disjunct union of directed rooted trees. Since variables in

different trees are independent of each other, the number of solutions

for inequality system is equal to the product of number of solutions for
each of the trees. Let us demonstrate how to calculate the solution for

only one tree.

Let f(root) is equal to the number of solutions of the tree rooted at
root. Let g(node, number) equal to the number of solutions of a

subtree rooted at node, if variable bound for that node inequality is
equal to number. We’ll now make the following claims

for inequality with variable lower bound (it is analog in the case of
variable upper bound). This algoritm has complexity of O(NM2), where

M is a limit on the upper bound, which is good enough for 70% of the

points. Further, we can notice that following holds (for the variable

lower bound case - as before it is analog with variable upper bound):

Using this observation, complexity becomes O(NM) and this wins

100% points.

Required skills: dynamic programming

Category: dynamic programming, graph theory

COCI 2011/2012 Task RASPORED

Round 2, November 19th, 2011 Author: Gustav Matula

Let’s say that we are given some permutation (order in which pizza’s

are made) , and we wish to calculate the tip we’ll get:

We can now conclude that order with regard to deadlines is not

important, and that order with regard to durations must be increasing,
so that pizza’s that are baked longer are multiplied by smaller

coefficient.

Brute force solution that sorts the pizzas after each update and

calculates the above sum has complexity O(N log N) or O(N) and is
worth 50 points.

Constraint given to Vi was sort of a hint that can lead to a simple

solution: in some array cnt we can use cnt[x] to store the number of
pizzas having baking time x. For Vi under 1000 we calculate every

query by traversing the cnt array. This approach was worth 80 points.

We can use some data structure like segmented array (BIT) for
implementing the cnt array, and aditional sequence that keeps the Vi

sums (sum[x] = cnt[x]*x). To remove duration Vp for some pizza p,
we must increase our solution by

Now we decrease cnt[Vp] by 1 and sum[Vp] by Vp. In order to insert
Vp into our structure, we do the same thing, but with inversed signs

and order (change cnt and sum first and then decrease the solution).
Ri sums are trivial to calculate and don’t require any data structures.

We can answer each query in O(log maxV), and total complexity is

O((N+P) log maxV) which is good enough for obtaining maximum

points for this task.

There is alternative solution that doesn’t depend on maxV. Idea is to

maintain the sorted sequence of all the baking durations, along with
the sums and corresponding coefficients. This can be achieved by

using balanced tree (online solution), and by using segmented array
built on top of the sorted sequence of all the durations (offline

solution).

Complexity of this approach is O((N + P) log (N + P)). Offline
implementation can be found in official solutions.

Required skills: mathematic problem analysis, data structures

Category: data structures

