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COCI 2011/12 Task JABUKE 

Round 1, October 22nd, 2011 Author: Adrian Satja Kurdija 

 
Movements of the boat can be simulated by keeping track of the leftmost 
and rightmost column occupied by the boat. 

If the apple is falling down a column between those two columns (inclusive), 
we do not need to move the boat. 

Otherwise, if the apple is falling to the left of the boat, we can move the 

boat just enough to catch the apple - the boat’s leftmost column needs to 

align with the apple’s column. The new positions are simple to calculate: the 

leftmost column is set to the apple’s column; the distance that the boat has 

moved is equal to the difference of the old and new leftmost column 

positions, and the rightmost column also moves that same distance to the 

left. 

If the apple is falling to the right of the boat, we apply a completely 

analogous move. In the end, we just output the sum of all move distances. 

 
Necessary skills: 

 
for - loop 
 
Tags: 
 

greedy algorithms 



 

COCI 2011/12 Task MATRIX 

Round 1, October 22nd, 2011 Author: Adrian Satja Kurdija 

 
A solution that iterates over all possible squares (by selecting all 

combinations of an upper-left cell and side length) and computes sums of 

diagonals for each of them has complexity O(N4), which exceeds the time 

limit. 

A faster solution, with complexity O(N3), works by selecting a central cell of 

a square and gradually expands the square outwards until reaching an edge, 

while keeping track of the current diagonal sums. Whenever expanding the 

current square, the diagonal sums are updated and the maximum beauty is 

updated as well, if the new beauty value is larger. In the end, we simply 

output the final maximum value. 

The algorithm described above must cover two cases: when the square 

centre is a matrix cell (i.e. with an odd-length square side) and when it is a 

corner of four cells (with an even-length side). The latter case is marginally 

more involved to implement. 

 
Necessary skills: 

 
matrix manipulation 
 
Tags: 
 

ad-hoc 



 

COCI 2011/12 Task X3 

Round 1, October 22nd, 2011 Author: Ivan Katanić 

 
The first useful observation is that individual binary digits of the friendship 

value are mutually independent, so they can be considered separately. If the 

ith digit of a result is equal to 1, a value of 2i is added to the friendship 

value, otherwise 0 is added. 

A digit of the result is equal to 1 only if the corresponding digits in 

extraterrestrial names differ. Since we are computing the total friendship 

value, we can count the number of appearances of 2i (digit 1 in position i) 

for each i.  

Let us denote by Ki the number of extraterrestrials who have the digit 1 in 

position i in binary name notation. Then we add 

( Ki * (N - Ki) ) * 2i 

to the sum of friendships, since that is exactly the number of pairs with 

differing digits in position i, multiplied by the weight of that digit position. 

 
Necessary skills: 

 
number systems 
 
Tags: 
 

ad-hoc 



 

COCI 2011/12 Task PLES 

Round 1, October 22nd, 2011 Author: Goran Gašić 

 
For simplicity, let us find partners for boys who wish to dance with shorter 
girls. The other case is solved analogously, by swapping boys’ and girls’ 
heights. The following algorithm solves the problem: 
 
solution := 0 
for each boy 
 find the tallest girl without a partner shorter than him 
 if no girl was found, continue 
 pair up the current boy and the girl 
 solution := solution + 1 
 
A naive implementation of this algorithm has complexity O(N2) and is worth 

60% of points. A key observation is that boys will be paired up with 

increasingly shorter girls if we iterate over boys from the tallest to the 

shortest one. This can be implemented with complexity O(N log N) or 

O(N+H), where H is the maximum height difference. Alternatively, a 

solution with complexity O(NH) is also worth all points. 

 

Proof of correctness: 

Let us denote by b and g the boy and the girl, respectively, in the first 

dance pairing we’ve made. In every optimal pairing, at least one of them will 

be paired up. Let us consider two cases: 

1) Only one of them has a partner. 

Without loss of generality, assume that the boy b is the one who has a 

partner. If we pair up b with g instead of his current partner g2, the number 

of pairs doesn’t decrease. 

2) Both the boy and the girl have a partner. 

Let b be paired up with a girl g2, and g with a boy b2. g2 cannot be taller 

than g. b2 is taller than g, therefore he is also taller than g2. Thus the 

number of pairs doesn’t decrease if we pair up b with g and b2 with g2. 



The first pairing reduces the problem to a smaller problem, which can be 

solved by the same algorithm. 

 
Necessary skills: 

 
proof of correctness of a greedy algorithm 
 
Tags: 
 

greedy algorithms 



 

COCI 2011/12 Task SORT 

Round 1, October 22nd, 2011 Author: Goran Gašić 

 
Let us first show that the sorting algorithm is correct. Consider the leftmost 

smallest element in the sequence. Until it is in the first position, every pass 

of the algorithm will apply a reverse operation on a subsequence including 

that element, thus moving it towards the beginning of the sequence. Once it 

is in the first position, it can be ignored. The procedure continues on the 

remainder of the sequence until each element is in the correect position. 

Notice that, after the first pass, all reverse operations will be applied to 

subsequences with length 2. Since every element will, in some step, 

exchange positions with every greater element in a smaller position and 

every smaller element in a greater position, we are left with a classical 

problem of computing the number of inversions in a sequence. 

In the reference solution, a Fenwick tree is used to solve the problem with 

complexity O(N log N). It is also possible to solve the problem using an 

interval (tournament) tree or merge sort, with the same complexity, or a 

bucket-based algorithm with complexity O(N sqrt N). 

 
Necessary skills: 

 
Fenwick tree (or interval tree) 
 
Tags: 
 

data structures 



 

COCI 2011/12 Task SKAKAC 

Round 1, October 22nd, 2011 Author: Ivan Katanić 

 
A solution with complexity O( T * N2 ): 

For each second, starting with 0, we compute a matrix of 1s and 0s, where a 
1 denotes a square reachable by the knight in the respective second. The 
matrix for second 0 has 0s in all positions, except for the starting position of 
the knight. From each matrix, we can compute the matrix for the next 
second, up to second T. The next matrix is computed by mapping all 1s to 
all squares reachable by any of the 8 possible jumps from that square, and 
then zeroing out all positions blocked during the next second. 

The memory complexity of this algorithm is O( N2 ), since we need only two 

matrices (the current and the next one) at any moment. This solution is 

worth 40% of points. 

 

A solution with complexity O( T * N ): 

Instead of the matrix of 1s and 0s, we will use a sequence of numbers, 

where each number represents a row of the matrix and its binary digits 

correspond to the 1s and 0s from the previous solution. For simplicity, we 

will continue to use the term matrix in the remainder of the description. 

The mapping of 1s in all 8 directions can now be implemented using bit 
operations, which is more efficient than the previous solution. 

The remaining problem is quickly computing the matrix of squares blocked in 

second t. Notice that if t is divisible by Kij, then the square (i, j) is blocked 

during second t. 

If Kij is greater than 1000, we can simply generate all moments when the 

square will be blocked, since there will be less than 1000 such moments. 

If Kij is less than 1000, the problem can be solved using prime factorization. 

Notice that, if Kij divides t, all prime factors of t (including the ones with 

exponent 0) must have greater or equal exponents than the corresponding 

exponents in the factorization of Kij. 



Let us denote by F(pq) the matrix with a 1 in position (i, j) if q is greater 

than or equal to the exponent of the prime number p in the factorization of 

Kij. 

Now the matrix of squares blocked in second t can be expressed as: 

F(p1
q1) & F(p2

q2) & … & F(pk
qk)    (1) 

where p1, p2, …, pk are all primes less than 1000, q1, q2, …, qk are their 

exponents in the factorization of t, and & is the bitwise AND operation. 

The direct computation of the above expression (1) is slow. However, notice 

that at most 7 primes in a factorization will have positive exponents, while 

all other exponents will be 0. 

Before the main algorithm, we will precompute, for each interval [x, y], the 

following: 

G(x, y) = F(px
0) & F(px+1

0) & … & F(py
0). 

The expression (1) can now be quickly computed by using F(pq) for all 

primes with a positive exponent, and the precomputed G for all other primes 

(with exponents of 0, grouped in at most 8 intervals), combining all values 

with a bitwise AND. 

Now that we can compute the matrix of squares blocked in second t, we can 

simply apply it to the current matrix of possible positions using a bitwise 

AND, thus obtaining the final matrix for second t. 

 

Necessary skills: 
 

prime numbers, bit operations 
 
Tags: 

 
mathematics 


