

CROATIAN OPEN COMPETITION IN

INFORMATICS

3rd ROUND

SOLUTIONS

COCI 2010/11 Task TABLICA

3rd round, December 11th, 2010 Author: Tomislav Grbin, Frane Kurtović

There are only four different rotations of the given matrix so computing the optimal

solution is straightforward - it is necessary to find the maximum of values for all

rotations and keep track of the ordinal number of the rotation so we can output it.

Keep in mind that if there are several rotations which give the same maximum

solution, the smallest number should be output.

If this is the matrix given in the problem statement:

By rotating once, twice, and three times we get:

These four matrices generate the following values: , , ,

.

One trick is to notice is that by multiplying each of these numbers by A* B * C * D

we simplify double comparisons to integer comparisons.

Necessary skills:

Basic algebra

Tags:

Ad-hoc

COCI 2010/11 Task ZBROJ

3rd round, December 11th, 2010 Author: Goran Gašić

The key observation is that Perica can get the minimum number by replacing all

occurences of digit six with digit five. Likewise, he can obtain the maximum number

by replacing all occurences of digit five with digit six.

The simplest way to do this is to read in the input as strings and simply carry out

the digit substitutions before converting them to integers and calculating the

results.

An alternative is to read the numbers as integers and do direct integer manipulation

to extract digits and make necessary substitutions.

Necessary skills:

Strings, basic algebra

Tags:

Ad-hoc

COCI 2010/11 Task EKIPA

3rd round, December 11th, 2010 Author: Matija Osrečki

In order to find a simple and elegant solution, it is important to notice that since

each student can participate in a single category, but multiple students can

compete in the same category, and each student has applied for all categories, it

suffices to determine for each student the category which they know best. Then we

can select the best K students, judging only by the category which they are best in.

Why is that solution correct? Precisely because any number of students can

compete in the same category. If a student is selected to participate in a category,

other students are not restricted in their category choice - only the selected student

is prevented from competing in any additional categories. It follows that we have to

determine for each student the category which they know best.

There are two possible implementations; one requires sorting, while the other one

doesn’t.

Solution:

For each student we determine the category which they know best. Now we have

each student’s knowledge represented by a single number. We can simply sort

students by that number and select the first K students from the sortes dequence.

Time complexity is O(N * M + N * log N). Memory complexity is O(N).

Alternative solution:

We can take advantage of the fact that students are already sorted by categories.

For each category we keep a pointer to the first (best) student. In each of K steps

we iterate over all categories and determine the category that contains the pointed-

to student with most knowledge. We add that student’s knowledge to the result and

move the pointer to the next best student in that category (the following one, since

they are already sorted by category). It is also necessary to keep track of students

that have already been selected, since they must be skipped if encountered again.

Time complexity is O(N * M). Memory complexity is O(N * M).

Necessary skills:

Greedy algorithms, sorting (not necessary, but simplifies the solution)

Tags:

Greedy algorithms

COCI 2010/11 Task ZNANSTVENIK

3rd round, December 11th, 2010 Author: Adrian Satja Kurdija

It is important to notice that if it is possible to delete K rows from the top of the

matrix leaving no two equal columns, the condition will also be satisfied if only K-1

rows are deleted. Hence the maximum K can be found using binary search.

Now we need an efficient method to check, for a given K, whether it is possible to

delete first K rows leaving no two equal columns. If we read the columns as strings

from the bottom up, a good idea is to sort them lexicographically. That way, any

two equal columns will be next to each other, so we only need to check adjacent

columns for equality up to length K.

The described solution can be implemented with complexity O(N2 * log N), where N

= max(R, C).

An alternative solution could use hashing of individual columns, reducing column

comparison to simple integer comparison (reducing complexity in the process). The

details of this solution are left as an exercise for the reader.

Necessary skills:

Binary search, string comparison, sorting, hashing

Tags:

Binary search, string manipulation

COCI 2010/11 Task DIFERENCIJA

3rd round, December 11th, 2010 Author: Adrian Satja Kurdija

The key observation follows: instead of calculating the sum of difference values of

all contiguous subsequences, we can separately calculate the sum of all maximum

values and all minimum values of the subsequences, subtracting the second from

the first number to obtain the solution. It is not difficult to show that this approach

is correct, since the difference value of a given subsequence is defined as the

difference between its maximum and minimum value, thus the observation follows

from addition associativity and commutativity. Here we will only describe a method

to find the sum of maximum values; the sum of minimum values is obtained with a

completely analogous algorithm.

Our approach is as follows: for each element of the provided sequence we shall

compute the number of contiguous subsequences that contain that element as their

maximum. In order to resolve ambiguity, we shall define the first out of multiple

equal maximal elements as the maximum of a subsequence.

If the position of the current element is K, and its value equals X, we need to find

the first element to the left of it with value greater than or equal to X and the first

element to the right with value strictly greater than X. If the two elements

satisfying the given conditions are in positions A and B respectively, then X is the

maximum element in exactly those contiguous subsequences that start at positions

between A+1 and K (inclusive) and end at positions between K and B-1 (inclusive).

There are exactly (K-A)*(B-K) such subsequences, since we multiply the number of

possible choices of the first element (K-A) with the number of possible choices of

the last one (B-K) in the subsequence. Hence the sum of maximum values is

increased by X*(K-A)*(B-K).

Now we only need an algorithm to find the first element to the left of the current

one that is greater than or equal to it (the algorithms to find the first one tho the

right that is greater, as well as the other combinations for finding minimum values,

are completely analogous). We shall traverse the sequence from left to right,

keeping a stack of pairs (value, position) containing some previous elements of the

sequence. The stack will be kept in decreasing order of the values. Processing of an

element with value X consists of popping all elements with values strictly less than

X from the stack. The element that remains at the top of the stack (if any) is

precisely the first one to the left of X that is greater than or equal to it. After that

the element X is pushed on top of the stack and the algorithm continues with the

next element of the sequence.

Necessary skills:

Monotone stack

Tags:

Data structures

COCI 2010/11 Task MONO

3rd round, December 11th, 2010 Author: Luka Kalinovčić

Let us denote by M the rectangle with minimal area that completely contains the

provided polygon. We intersect M with the least possible number of vertical lines

such that one of them passes through each polygon vertex. The lines divide the

polygon into rectangles, so its area can be computed as the sum of areas of

individual rectangles.

Note that the area of a single rectangle can be computed using the inclusion -

exclusion principle. The area equals the difference of areas above the lower and

upper edge.

Furthermore, the sum of their areas can be obtained by traversing the polygon

anticlockwise. Whenever we traverse a horizontal edge, we add the area above it to

the sum, with the sign depending on the direction of traversal. Since the uppermost

edge will be traversed from right to left, we will add areas in that direction with the

negative sign.

Let us select a cell from the table as a potential upper left corner of the rectangle

M. Next we determine a letter on one of the cells contained in the polygon specified

by M. The polygon is monoliteral only if all its cells contain that same letter, i.e. if

the number of incidences of that letter is equal to its area.

The number of incidences of a letter within a polygon can be calculated in an

analogous way to calculating its area. The only difference is that instead of adding

areas, we add the number of incidences of the required letter. A matrix can be

precomputed containing data enabling us to answer such queries in constant time.

Finally, the total number of monoliteral polygons is obtained by running the

described algorithm for each potential upper left cell in the table. The time

complexity is O(R * C * V).

Necessary skills:

Inclusion - exclusion principle

Tags:

Computational geometry

