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COCI 2010/11 Task TIMSKO 

1st round, October 23rd, 2010 Author: Adrian Satja Kurdija 

 

Observe that a team can be formed if three conditions are satisfied: the number of 

girls is at least 2, the number of boys is at least 1, and M+N ≥ K+3 holds (since a 

team consists of three students, and K students need to go on an internship). We 

naturally arrive at a greedy algorithm - forming teams as long as the conditions are 

met. More precisely, the pseudocode is as follows:≥ 

 

while (M ≥ 2 and N ≥ 1 and M+N ≥ K+3) do 

{ 

 result := result+1;  (increment the number of formed teams) 

 M := M-2;   (decrease the number of girls) 

 N := N-1;   (decrease the number of boys) 

} 

 

Alternative solution: 

 

If there are at least twice as many girls as there are boys, we can say that they 

form a surplus regarding to team formation, otherwise the boys form a surplus. 

Thus, we can repeat K times: check if there is a surplus of girls; if so, decrement 

the number of girls (i.e. invite a girl to the internship), otherwise decrement the 

number of boys (i.e. invite a boy to the internship). In the end, we calculate the 

number of teams we can form from the remaining boys and girls. 

 

 

Necessary skills: 
 

Number comparison, while or for loop 

 

Tags: 
 

Ad-hoc, greedy algorithms 



 

COCI 2010/11 Task PROFESOR 

1st round, October 23rd, 2010 Author: Goran Gašić 

 

Observe that checking every possible interval and every possible grade is too slow 

for a sufficiently large N. Such a solution has a complexity of O( N3 ) and is worth 

70% of points. 

 

To obtain a complete score, we need another approach. 

 

If we assume the grade which the professor will award the students, we can, in a 

single pass, determine the longest continuous subsequence of desks such that each 

desk contains at least one student deserving the assumed grade. This can be 

implemented using a counter storing the current number of continuous desks, and 

updating it for each desk. 

 

Finally, the solution consists of iterating the described algorithm for each grade 

from 1 through 5 and taking the maximum of the individual results. 

 

Also observe that the problem can be solved with complexity O( N ) even if grades 

are from the interval 1 through N. Solving this problem is left as an exercise for the 

reader. 

 

 

Necessary skills: 
 

for loop 

 

Tags: 
 

Ad-hoc, dynamic programming 



 

COCI 2010/11 Task SRETAN 

1st round, October 23rd, 2010 Author: Goran Gašić 

 

A naïve solution would iterate over positive integers and check their luck until the 

K-th lucky integer is found. Such a solution is worth 20% of points. 

 

A better solution is possible if a pattern is noticed in lucky numbers. 

 

Specifically, if we substitute the digit 4 with 0, and 7 with 1, the lucky numbers 

correspond to binary number notation, with an additional quirk that leading zeros 

are allowed. 

 

A solution iteratively generating the first K lucky numbers using this observation 

has a complexity of O( K ) and is worth 50% of points. 

 

Another speedup can be made observing the number of lucky numbers with a given 

length. There are 2N lucky numbers with length N (since each of N positions can 

contain one of two digits). 

 

Knowing this, we can determine the length L of the required lucky number and the 

index P of that number among all lucky numbers of length L. Then, it is sufficient to 

output the number P-1 in binary with the appropriate number of leading zeros, 

substituting digits 0 and 1 with 4 and 7, respectively. 

 

 

Necessary skills: 
 

Pattern recognition, binary number system 

 

Tags: 
 

Ad-hoc 



 

COCI 2010/11 Task LJUTNJA 

1st round, October 23rd, 2010 Author: Adrian Satja Kurdija 

 

Let S be the sum of all wishes. Imagine that each child was given as many candies 

as it wants, and now they have to be taken away, leaving M candies in total. That 

is, we have to take S-M candies away. 

 

Since the sum of the numbers of candies that the children will be missing is 

constant (equal to S-M), and we wish to minimize the sum of squares of those 

numbers, a key observation is that the numbers should be “as equal as possible”. 

More precisely, it is possible to prove mathematically (using the inequality of 

arithmetic and geometric means) that the sum of squares of positive numbers, with 

a fixed sum, is minimal when they are equal. 

 

Let K be the remaining number of candies that need to be taken away (the starting 

value of K is S-M). Our goal is to, if possible, take away an equal number of 

candies from each child, specifically K/N. If this is not possible, the number of 

candies taken away should be as close as possible to K/N. 

 

If the child that wants the smallest amount of candies has at least K/N candies, we 

will be able to fulfill the goal by taking K/N candies away from it, thus reducing the 

problem to the remaining N-1 children (by decrementing N, calculating the new 

value of K, and processing the child with the next smallest wish). On the other 

hand, if the observed child has less than K/N candies, preventing us from taking 

that many from it, we will take as many as we can, i.e. all the candies it was given, 

and proceed to process the remaining children. 

 

In the end, we can just output the sum of squared numbers of candies taken away 

from the children. The complexity of the described algorithm is linear, but it 

requires first sorting children’s wishes into a nondecreasing sequence, resulting in 

the total complexity of O( N log N ). 
 

It is also possible to solve this problem using binary search, however this solution is 

left as an exercise for the reader. 

 

Necessary skills: 
Sorting in O( N log N ), discerning arithmetic relationships, greedy algorithms 

 

Tags: 
Greedy algorithms, binary search 



 

COCI 2010/11 Task TABOVI 

1st round, October 23rd, 2010 Author: Matija Osrečki, Stjepan Glavina 

 

Given any solution, we can decide to first do all tab additions and then all deletions, 

since the order of operations is irrelevant. Using this convention, we can ignore the 

rule stating that no line should have less than zero tabs during algorithm execution. 

 

The task can be interpreted as follows: we will define a sequence of numbers in 

which the i-th number equals Ki-Pi. We will also define two queries: increment or 

decrement (by one) all numbers from a particular range. Those ranges will be 

referred to as positive and negative ranges, respectively. The goal is then to 

transform the initial sequence to a sequence of all zeros by executing a minimal 

number of queries.  

 

Solution: 

 

Let us consider an optimal solution which consists of some number of positive and 

negative ranges. We choose a positive and a negative one which overlap, if such 

exist.  

 

There are four distinct cases of overlapping ranges: 

 

1. Both ranges are equal. This means that the solution found is not optimal, 

since the two queries will cancel out. 

 

2. Both ranges have equal upper or lower bound. This also means that the 

solution found is not optimal, since the same effect can be achieved by a 

single positive or negative range equal to their difference. 

 

3. The ranges share no equal bounds but one range is contained within another. 

We observe that the overlapping part of the ranges cancels out, but since 

two ranges are necessary in either case, both solutions are equally good. 

 

4. The ranges share no equal bounds but they partially overlap. The overlapping 

part again cancels out, and the effect is equal as if we had two non-

overlapping ranges. The number of ranges (two) remains unchanged, making 

both solutions equally good. 

 

Therefore, whenever we encounter case 1 or 2, we can replace two ranges with a 

single one, as described above. By applying consecutive replacements for those two 



cases, it is obvious that the number of ranges is decreasing. Therefore, at some 

point, we will reach the minimum number of ranges, which means an optimal 

solution is found. By also substituting ranges in cases 3 and 4, we can always 

obtain an optimal solution in which no two ranges overlap. 

 

We can divide the sequence into contiguous subsequences of only nonnegative or 

only nonpositive numbers. This alternating division can be found with linear 

complexity. Each of them can be solved separately using only negative or only 

positive intervals, respectively. Since the cases are mutually analogous, in the 

remainder of the discussion we will consider solving the case with nonnegative 

numbers using negative intervals. 

 

If there is a zero value in the subsequence, we can divide it into the part left of that 

zero and the part right of it and solve each of these parts separately. It can always 

be done since there will never be an interval overlapping a zero in the optimal 

solution. If there is no zero value, we can use a single interval to solve the 

subsequence and repeat the same procedure (which has possibly created some 

zeros). This process will eventually result in an optimal solution. Proving this fact is 

not difficult, so it is left as an exercise for the reader. 

 

We can represent the (nonnegative) subsequence as a histogram, where numbers 

represent column heights. One possible way of obtaining a solution for a 

(sub)sequence is using recursion. We can find the smallest number B using an 

interval tree. After that, we use a negative interval on the subsequence B times, 

zeroing the smallest number. Then we can divide the subsequence around the 

newly created zero and solve the left and right parts recursively. The complexity of 

this algorithm is O( N log N ). 
 

This recursive algorithm actually divides the histogram to a binary tree, branching 

to two smaller disjoint cases in each step. Instead of recursion, we can use a well-

known algorithm with complexity O( N ) using a stack. 

 

Alternative solution: 

 

There is a completely different solution, using dynamic programming, that does not 

depend on the facts proven above. The state is determined by three numbers: 

1. the number of opened positive intervals 

2. the number of opened negative intervals 

3. the index of the current position 

 

In each step, we can: 

1. open a new interval beginning at the current index 



2. close a previously opened interval (ending it with the previous index) 

3. if the number of positive and negative intervals matches the required number 

of tabs, we can move on to the next index 

 

This algorithm can be implemented with complexity O( N*M2 ), where M is the 

largest number of tabs that can appear in a row. 

 

 

Necessary skills: 
 

Greedy algorithms (correct usage and proof of correctness), converting a histogram 

into a binary tree using a RMQ structure or a stack, dynamic programming 

 

Tags: 
 

Greedy, dynamic programming 



 

COCI 2010/11 Task ŽABE 

1st round, October 23rd, 2010 Author: Stjepan Glavina 

 

We observe that the frog numbered N-1 reaches its initial position in a single jump. 

Similarly, the frog numbered N overshoots its initial position by one (effectively 

moving one position forward). The algorithm is as follows: we arrange frogs 

numbered 1 through N-1 in such a way that their relative order is preserved in the 

resulting arrangement. In the end, we just let the N-th frog leap until it reaches the 

correct position. 

 

This leaves frogs numbered 1 through N-1, so we need to arrange them. Assume 

that frogs numbered N-1, N-2, N-3, ..., X+1 are arranged into a correct relative 

ordering. Now, we try to add the X-th frog into the relative ordering without 

violating it. Among the frogs which have already been arranged, we find the frog 

which should immediately precede the frog numbered X. We denote by D the 

number of spaces the frog X needs to be moved to be correctly placed. 

 

Let G be the greatest common divisor of X and N-1. Let us see how the frog 

numbered X leaps if the Frog Regent proclaims its name. After (N-1)/G 

proclamations, the frog will return to its initial position. After a proclamation, the 

value D mod G remains unchanged. Thus, if D mod G equals zero, we can put the 

frog to the desired position by repeatedly proclaiming X. 

 

In case D mod G does not equal zero, we should change that number so that D 

mod G equals zero by gradually decreasing it as follows: we position the N-th frog 

immediately in front of X and then proclaim X once. Once D mod G reaches zero, 

we can put the frog to the desired position using the aforementioned procedure. 

 

Alternative solution: 

 

Let us assume that there exists a function which would decipher the proclamations 

needed to get the resulting arrangement of 1, 2, 3, ..., N. By changing the order of 

those proclamations, it is possible to get the reverse ordering, as well. This can be 

achieved by reversing the sequence of proclamations and replacing each 

proclamation with a series of same proclamations (left to the reader to calculate the 

exact number) which results in the reverse movement of the frog being moved. 

 

The above function is yet to be realized. We will put the frog numbered N-2 

immediately after the frog numbered N-1, then the frog numbered N-3 immediately 

after the frog numbered N-2 etc., with the frog numbered 1 being finally put 



immediately after the frog numbered 2. Then, the frog numbered N can trivially be 

put immediately after the first frog. 

Assume that we wish to place the frog X immediately after X+1. We put the frog 

numbered 1 after the frog X+1, the frog 2 after X+1 or 1, the frog 3 after X+1 or 1 

or 2 etc. We repeat this with all frogs up to and including X. 

At that moment, we have a circle which comprises two parts: the first one is formed 

by frogs numbered 1 to X, and the second one by frogs numbered X+1 to N-1 (the 

position of the frog numbered N can be safely ignored). 

Now we repeat the procedure, but this time without the frog numbered X. We put 

the frog numbered 1 after the frog X, the frog 2 after X or 1 etc. The final step is to 

put the frog numbered X-1 immediately after the frog X, 1, 2, 3, ..., or X-2. This 

results in the frog numbered X being put immediately after the frog numbered 

X+1, which was our initial intent.  

 

 

Necessary skills: 
 

Number theory 

 

Tags: 
 

Ad-hoc 

 


