
CROATIAN OPEN COMPETITION IN
INFORMATICS

7th ROUND

SOLUTIONS

COCI 2009/2010 Task: SPAVANAC

7th round, 24. April 2010. Author: Marko Ivanković

Just carefully implement the "subtract 45 minutes" operation. The tricky parts
are M < 45 and from 0:00 to 0:45.

Necessary skills:
simple number operations

Tags:
ad-hoc

COCI 2009/2010 Task COKOLADA

7th round, 24. April 2010. Author: Leo Osvald

First, note that the smallest possible size that contains K squares is the
smallest power of 2 larger than or equal to K.
Greedy strategy yield the smallest number of breaks required to reduce 2X to
K. First we break the piece in two, yielding two pieces, both smaller than K,
with 2x-1 squares each. We now take one of them and need K - 2x-1 squares
more of the other one. We break that one in half and repeat the process. Each
time we need more than half of the current square, we keep one part. On
other occasion we throw that part away.

Necessary skills:
binary numbers, powers

Tags:
greedy algorithms

COCI 2009/2010 Task BAKICE

7th round, 24. April 2010. Author: Marko Ivanković

We precompute all distances between seats and rude passengers. We now
repeatedly find the smallest global distance. We check to see what seat and
passenger is in question. We find all other passengers equidistant to the seat,
and than eliminate them all. We increment explosion counters as needed.
Repeat until we run out of chairs, or passengers, or both.

Necessary skills:
shortest distance algorithm

Tags:
greedy algorithm

COCI 2009/2010 Task SVEMIR

7th round, 24. April 2010. Author: Goran Žužić

First, you need to know at least one way of constructing minimum spanning
trees, for example Kruskal's algorithm:

• http://en.wikipedia.org/wiki/Kruskal%27s_algorithm

We claim that tunnels need to be constructed only between planets who
are immediate neighbors on one of the axis. This can be easily proven.
Suppose there are two planets (A and B) and that tunnel cost between A
and B is |xA-xB| ≤ min{|yA-yB|, |zA-zB|}. Now suppose that A and B are not
immediate neighbors on the X axis. In other words there is some planet C
such that xA ≤ xC ≤ xB. It is easy to see that instead of constructing one
tunnel from A to B we can construct two tunnels: (A,C) and (C,B) that cost
less than or equal to tunnel (A, b) since dist(A,C) + dist(C,B) ≤ |xA-xC| +
|xC-xB| = |xA-xB|.

We are nearly done now. We simply construct a graph of all planets with links
between immediate neighbors. Using Kruskal's algorithm we obtain a minimal
cost fully connected network.

Necessary skills:
Kruskal / Prim algorith, Minimum spanning tree

Tags:
graph theory

COCI 2009/2010 Task KRALJEVI

7th round, 24. April 2010. Author: Leo Osvald

For start, note that simply calculating all pairs of distances is O(N2) time
complexity and scores 30% of points.
For 100% points, we use dynamic programming in O(R * S) time complexity.
First, we find the sum of distances between all kings with coordinates X1 ≤
X2 and Y1≤ Y2, and on the second pass with X1 > X2 and Y1 < Y2. To find the
sum we start at (0, 0) and work left to right / top to bottom. We need the
following:
- row_count(X, Y), row_sum(X, Y) - number of pieces in the fields with

coordinates Xi < X, Y = Yi and the sum of distances to the field X, Y.
- col_count(X, Y), col_sum(X, Y) - same as row but for columns

- dp_count(X, Y), dp_sum(X, Y) - same but for the lower left part of the

board, in other words for fields Xi ≤ X and Yi ≤ Y.
For dynamic programming we need the following relations:
row_sum(X, Y) = row_sum(X, Y-1) + row_count(X, Y-1)
row_count(X, Y) = row_count(X, Y-1) + B(X, Y)
col_sum(X, Y) = col_sum(X-1, Y) + col_count(X-1, Y)
col_count(X, Y) = col_count(X-1, Y) + B(X, Y)
dp_sum(X, Y) = dp_sum(X-1, Y-1) + dp_count(X-1, Y-1)

+ row_sum(X, Y) + col_sum(X, Y) + B(X, Y)
dp_count(X, Y) = dp_count(X-1, Y-1) + row_count(X, Y)

+ col_count(X, Y) + B(X, Y)
Where B(X, Y) is 1 if the field (X, Y) contains the figure of the current player,
and 0 otherwise.
Now we can easily see that the sum of filed (X, Y) to other pieces is:

sum(X, Y) = dp_sum(X-1, Y-1) + row_sum(X, Y) + col_sum(X, Y),

Necessary skills:
dynamic programming

Tags:
dynamic programming

COCI 2009/2010 Task RESTORAN

7th round, 24. April 2010. Author: Goran Žužić

Degree of roads of any given city is the number of roads with endpoints
in that city. First we create an additional city X, and connect it to all cities
with odd degree of roads. It can be shown that this leaves no cities with
odd degree (including X). This means that the graph is Eulerian, or if not
connected, that each of its components is Eulerian. We now find Eulerian
cycles in all components and allocate building rights on them alternating
between 1 and 2.
For each component with at least one odd degreed city, this is a viable
solution. For components with no odd degrees, there are two cases:

• One degree larger than or equal to 4. Starting from such degree forms
a correct solution.

• All degrees equal to 2. The component is a cycle. If it contains an even
number of cities, it is possible. Otherwise it is impossible to solve this
graph.

Test cases:

Ther are 6 groups of test cases. First 4 groups are simple random graphs and
are worth 20% of points. Next two groups are worth 40% each. The difference
between two groups are graph sizes.
These are the descriptions of test cases in the larger group:

• a) large cycle, odd number of cities (impossible)
• b) tree
• c) chain
• d) large cycle, odd number of cities with a few extra cities connected

to it
• e) 99 cycles with 1001 cities making a long chain and a couple of

extra cities
• f) 10 cycles with 9999 cities making a long chain and one extra city
• g) random multi-component graph
• h) random multi-component graph with no degree larger than 3

Necessary skills:
Eulerov ciklus (there is another solution that doesn't require this)

Tags:
graph theory

	CROATIAN OPEN COMPETITION IN INFORMATICS
	7th ROUND

