
CROATIAN OPEN COMPETITION IN
INFORMATICS

6th ROUND

SOLUTIONS



COCI 2009/2010 Task: KAJAK

6th round, 6. March 2010. Autor: Marko Ivanković

We start from the finish and work our way to the start. As we encounter
kayaks along the way, we mark them in increasing order. Just be careful to
mark two kayaks in the same column with the same number.

Necesarry skills:
strings

Tags:
ad-hoc



COCI 2009/2010 Task NATJECANJE

6th round, 6. March 2010. Autor: Marko Ivanković

This task can be solved using a simple greedy algorithm. First we take care of
teams that have lost their kayaks and brought reserves. They are the same
as teams that have not lost their kayaks and did not bring reserves, so they
can be counted as such. Now, starting from the first team, we work our way
up. For each kayakless team we first check their lower-numbered neighbor
first, if they can borrow that kayak, then they do it. If not, they check their
upper-numbered neighbor. If they have a spare kayak, they borrow that one.
If not, they are kayakless and increment the solution by one.

Necesarry skills:
greedy algorithm

Tags:
greedy algorithm



COCI 2009/2010 Task DOSADAN

6th round, 6. March 2010. Autor: Marko Ivanković

This task was inspired by a puzzle from +Ma's Reversing site.
OTP is theoretically perfect algorithm, if implemented correctly. In most
cases if it fails, it fails due to human error. In this task, the key bit of
information is the structure of the plaintext and the key. Let us take a look
at the binary coding of plaintext letters. We se that letters 'a' - 'z' all have
the 7th bit equal to 1. Numbers '0' - '9' present in the key all have the 7th bit
equal to 0. Space and full stop also have the 7th bit equal to 0. This is enough
information to conclude that in the ciphertext, all letters will have the 7th bit
equal to 1, and space and full stop 0. This is enough information to solve this
task.
For extra points, you might have realized that this now provides enough
information for you to try and decrypt the test data completely. Using some
guesswork, of course.

Necesarry skills:
understanding ASCII coding

Tags:
cryptography



COCI 2009/2010 Task XOR

6th round, 6. March 2010. Autor: Goran Žužić

---

Tags:
???



COCI 2009/2010 Task HOLMES

6th round, 6. March 2010. Autor: Marko Ivanković

This task cannot be solved by simply finding dominators for the graph. But it's
not far away. The following example illustrates the problem with dominators:

4 4 1

1 3

2 3

1 4

2 4

3

Event 3 is proven by the Yard. Event 3 can be caused by either event 1, event
2 or both. Even though we do not know which one, note that one of them had
to be. Since event 4 can be caused by either event 1, event 2 or both, this
means that event 4 is also part of the solution. Even though we do not know
the exact cause.
Let us see how we can approach this problem. First, we add all events proven
by Scotland Yard to the solution. This is a no brainer. Then, we flood fill from
them, adding all "consequences" of proven events to the solution. This leaves
"causes" and "consequences of causes". For each not yet proven event, we
try to prove it by contradiction. We start by supposing that the event X could
not have happened. Then we optimistically presume all other events that do
not cause event X to happen to have happened. This now leaves a set of
events leading to X and some leading from X marked as "did not happen". If
one of the proven events ends up "not happened" this is a contradiction and
we can surmise that event X had to have happened.
How can we check this quickly? For each event X, we can iterate through all
other events Y. If the set of "causes" of X contains all "causes" of Y then Y
must not have happened. "causes" is the minimal set of events that can cause
X. Note that all "causes" do not contain entry edges. Causes for each event
can be precomputed ahead of time.



On a side not, talking in past perfect conditional tense in English is extremely
confusing.

Necesarry skills:
graph theory, logic

Tags:
graph theory



COCI 2009/2010 Task GREMLINI

6th round, 6. March 2010. Autor: Luka Kalinovčić

Let xD[i] be the number of years until the birth of the first type i gremlin
with D ancestors. Since there is one of each type of gremlins born in the
accident we can set x0[i] = 0, for each i.
Examine one type i gremlin with D ancestors. After Yi years he spawns one
type j egg, that needs Zi,j years to hatch. That egg has D+1 ancestors. So
we now know that xD+1[j] is less than or equal to xD[i] + Yi + Z. Obviously,
finding the minimum of all such values for all gremlins that hatch type j eggs
we obtain xD+1[j]. We can observe all types at once by using matrix algebra.
We have:

A ⊗ XD = XD+1

Where A is a rectangular matrix with i-th row and j-th column equal to Yj +
Zj,i

if type j gremlin hatches type i egg, or ∞ if not. Matrices XD and XD+1 are self
explanatory, and ⊗ marks min-plus matrix multiplication.
Matrix A can be raised to arbitrary power fast using binary exponentiation.
After multiplying A to the power of D and performing min-plus with X0 we
scan the obtained XD matrix. If each number is larger than T, there are
no gremlins with D ancestors. Otherwise, there is at least one. Using binary
search on D we find the largest possible D.

Kategorija:
min-plus algebra, matrix multiplication and powers, binary search


	CROATIAN OPEN COMPETITION IN INFORMATICS
	6th ROUND

