
CROATIAN OPEN COMPETITION IN
INFORMATICS

3rd ROUND

SOLUTIONS

COCI 2009/2010 Task FILIP

3rd round, 19. December 2009. Author: Filip Barl

Simply imputing the numbers as string, reversing them and comparing does
the trick.
Or half a dozen other possible solutions such as modular arithmetic, arrays or
more esoteric solutions.

Necesarry skills:
string manipulation

Tags:
ad-hoc

COCI 2009/2010 Task SLATKISI

3rd round, 19. December 2009. Author: Leo Osvald

This one is straightforward. All you need to know is how your chosen language
rounds output.

Necesarry skills:
knowing your programming language IO routines

Tags:
ad-hoc

COCI 2009/2010 Task SORT

3rd round, 19. December 2009. Author: Luka Kalinovčić

By simply counting the number of times each number appears and sorting
by those values we arrive at the solution. There are numerous ways we can
implement that solution. For start, we can simply sort the numbers in O(N log
N) time complexity and for each comparison scan the entire sequence in O(N)
complexity.
A better solution is to pre calculate all frequencies and use that data in
sorting. Depending on implementation this can range from O(N log2 N) to O(N
log N).

Necesarry skills:
data structures

Tags:
data strucutres

COCI 2009/2010 Task RAZGOVORI

3rd round, 19. December 2009. Author: Leo Osvald

First, note that greedy strategy finds the optimal solution. Each time a
detector detects calls on location i, we will presume that the call is made
between the leftmost and rightmost house possible. This means that all
detectors between those two houses must detect at least one more call. Naive
implementation of this solution can lead to O(N log N + N*C) time complexity
and 50% of points.
Let's try to form a better solution. We start by sorting the detectors by
position. We now start from the left most detector, and maintain a stack of
current calls. Of course at the first detector we add C1 calls to the stack. We
now process detectors one by one in order. If the number of calls detected
by the current detector is greater then the number of calls on stack, we add
more calls to the stack. If it is smaller, we reduce the number of stack. We
can now solve the problem by counting the number of times we remove items
from stack.

Necesarry skills:
dynamic programming, greedy algorithm

Tags:
greedy algorithm, dynamic programming

COCI 2009/2010 Task PATULJCI

3rd round, 19. December 2009. Author: Luka Kalinovčić

For now, forget about the problem we are solving.
Suppose we had a sequence of integers and an algorithm like this:
while there are different numbers in the sequence

select any two different numbers from the sequence
and erase them

For example if the sequence were:

1 2 3 1 2 3 2 3

the algorithm could have done this:

1 2 3 1 2 3 2 3 --> 3 1 2 3 2 3 -> 1 3 2 3 -> 3 3

Note that we could also end up with other sequences if we selected pairs in a
different way.
Let candidate be the number that is left in a sequence (3 in the example
above).
Let count be the number of numbers left in a sequence (2 in the example
above).

The cool thing about the algorithm is that if there is a number that appears
more than N/2 times in the sequence it must end up as a candidate no
matter the way we select pairs. Intuitively, we don't have enough other
numbers to kill all of the candidate numbers.

So we can choose our own way to select pairs. Let's do it recursively like
this.
1) Split the sequence S in two halves L and R.
2) Run the recursive algorithm on sequence L to get L.candidate and L.count
3) Run the recursive algorithm on sequence R to get R.candidate and
R.count

4) Kill the remaining pairs among L.count + R.count numbers that are left.

The step #4 can be done very efficiently like this:

if L.candidate == R.candidate
S.candidate = L.candidate
S.count = L.count + R.count

else
if L.count > R.count

S.candidate = L.candidate
S.count = L.count - R.count

else
S.candidate = R.candidate
S.count = R.count - L.count

end
end

So, we can use this idea to build the interval tree, every node containing info
(candidate and count) about the subsequence it represents.

We can also query the interval tree to get candidate number for any interval
[A, B]. Then we can use binary search to count the number of appearances
of the candidate number in the interval and determine if the picture is pretty
or not.

Necesarry skills:
advanced data structures, divide and conquer

Tags:
advanced data structures, divide and conquer

COCI 2009/2010 Task PLANETE

3rd round, 19. December 2009. Author: Goran Žužić, Luka Kalinovčić

With X | Y we denote that X divides Y, ie. there exists k such that k*X = Y.

Let us denote with X1, X2, .., Xm duration of events in days. Note that saying:

• "Between dates A and B there were 1 events 1, 2 events 2, etc."

is the same as saying:

• "365 | (1X1+ 2X2+...+ mXm-(B-A))".

where B-A is the difference in day between dates A and B. Further, we can
split that into:

• "5 | (1X1+ 2X2+...+ mXm+A-B)"
• "73 | (1X1+ 2X2+...+ mXm+A-B)"

(note that 365=5*73). Since 5 and 73 are prime numbers, using Gaussian
elimination we can find all possible remainders of X-es when divided by 5 and
73 (separately). Using Chinese remainder theorem we can further determine
the remainder of each X when divided by 365.

Literature:
• http://en.wikipedia.org/wiki/Gaussian_elimination
• http://en.wikipedia.org/wiki/Modular_arithmetic
• http://en.wikipedia.org/wiki/Chinese_remainder_theorem

Necesarry skills:
modular arithmetics, Gaussian theorem of elimination, modular inverse

Tags:
discrete mathematics

	CROATIAN OPEN COMPETITION IN INFORMATICS
	3rd ROUND

