
CROATIAN OPEN COMPETITION IN
INFORMATICS

1st ROUND

SOLUTIONS

COCI 2009/2010 Task NOTE

1st round, 24. October 2009. Author: Marko Ivanković

This is a simple ad-hoc task. After reading the sequence comparing it to "1 2
3 4 5 6 7 8" and "8 7 6 5 4 3 2 1" yields the result.

Necesarry skills:
array input

Tags:
ad-hoc

COCI 2009/2010 Task DOMINO

1st round, 24. October 2009. Author: Bruno Rahle

This task can be solved by solving the mathematical problem behind it and
simply calculating the solution using that formula. However, the constraints
were small enough that a more programming oriented solution exists. First
note that if we take a particular domino we can turn it so that the first number
on the domino is the smaller one (if they are both equal it's doesn't matter
anyhow). Now we can sort all tiles by their smaller number first, and break
ties using larger number if necessary. Since each tile appears only once,
this gives us a simple ordering which we can traverse. Going tile by tile and
summing dots gives us the following code:

For each i from 0 to N

For each j from i to N

solution = solution + i + j

.

Necesarry skills:
math, recognizing implicitly defined rules

Tags:
mathematics

COCI 2009/2010 Task DOBRA

1st round, 24. October 2009. Author: Filip Barl

At first, you could notice there are 26 ways one can substitute '_' with a letter.
Trying all combinations would not be solvable in the constraints given in this
task. However there are only 3 classes of substitution:

• substitute with a vowel
• substitute with the letter 'L'
• substitute with a consonant different from 'L'

The first class contains 5 letters, the second class 1 letter and the third class
20
letters.
The constraints were small enough that you can now solve the problem by
checking all possible combinations of these three classes for each '_'. Of
course you need to take care not to count illegal combinations. A good way
to do that is to monitor the last two characters and weather or not L has
appeared.

Necesarry skills:
combinatorics

Tags:
dynamic programming

COCI 2009/2010 Task MALI

1st round, 24. October 2009. Author: Marko Ivanković, Filip Barl

Let's try to solve the following subproblem: Given two sequences A and B,
what is the optimal pairing for these two sequences? Let Amax be the largest
number in sequence A (if more than one exists choose any one), and Bmin be
te smallest number in sequence B. Choose some pairing which contains the
air (Amax, Bmin). Is this optimal? There are two cases we need to address:
(Amax + Bmin) is the largest sum in the chosen pairing. If this is the case, it
is quite obvious that no other number from B can reduce this sum. The best
you can do is select another instance of Bmin, if more than one is present,
and achieve the exact same sum. So, if (Amax + Bmin) is the largest sum in
the chosen pairing, there is no way to improve that. (Amax + Bmin) is not
the largest sum in the chosen pairing. Let (Ax, Bx) denote the pair with the
largest sum. Can we improve this by breaking the (Amax, Bmin) pair? We
could try creating pairs (Amax, Bx) and (Ax, Bmin). It is clear that now the
sum Ax + Bmin is equal or smaller than Ax + Bx. However, Amax + Bx is now
larger or equal than Ax + Bx becase Amax is larger than or equal to Ax. This
has now created a new largest sum, larger than or equal to the previous one.
So we conclude that it is not possible to improve the solution by not using
(Amax, Bmin). This gives as a good starting point for a greedy approach.

Necesarry skills:
recognizing greedy solutions

Tags:
greedy algorithms

COCI 2009/2010 Task GENIJALAC

1st round, 24. October 2009.
Author: F. Barl, G. Žužić, M.

Ivanković

We consturct a directed graph with N vertices, labeled by numbers 1 to N.
All edges will be of form permutation[k] → k for each k smaller than or
equal to N where permutation[] is the shuffle sequence given in the input.
It is clear that each vertex has exactly one incoming and one outgoing edge
,because for each x and y permutation[x] differs from permutation[y] is x
differs from y. Such graph contains one or more components, where each
component is a cycle of length p. Note that this graph uniquely represents
the output sequence of Mirkos machine. We now compute cycle lengths for
each component. We construct an array cycle[X] that stores the length of
the cycle containing vertex X. This can be constructed in O(N) time. We can
now determine for any columns C to D the number of rows between two
repetitions of the original ordering as P = LCM(cycle[C], cycle[C+1],
…, cycle[D]) where LCM is the least common multiple function. We now
know that the rows we are interested in are given as 1 + q * P where q is a
nonnegative integer. The solution to the original problem is now the number
of nonnegative integers q that satisfy:

A ≤ 1 + q * P ≤ B
This can be easily solved.

Necesarry skills:
greatest common divisor, combinatorics

Tags:
graph theory

COCI 2009/2010 Task ALADIN

1st round, 24. October 2009. Author: Goran Žužić

First, we need to find an efficient way of generating the following sequence:

A%B + (2A)%B + (3A)%B + ... (nA)%B (0)

Known formula gives us (where [x] is the integer part of X and {x} is the
fractional part of X):

[x] + {x} = x (1a)
(A%B) / B = {A/B} (1b)

Combining (0), (1a) and (1b) we have:

A*(1+2+...+n) = B*([A/B] + [2A/B] + ... + [nA/B]) + B*({A/B} + {2A/
B}

+ + {nA / B}) (2)

From (2) we see that we can solve (0) if we can solve:

[A/B] + [2A/B] + ... + [nA/B] (3)

Note that (3) can be interpreted geometrically: How many lattice points are
in the triangle (0,0) (n,0) (n, A/B*n) if we exclude lattice points on the X
axis.

Let us examine the following two cases:

• A ≥ B

There exists a nonegative integer k and integer r from [0, B-1] such that A
=
kB + r. We use this and (3) to obtain:

[(kB+r)/B] + [2(kB+r)/B] + ... + [n(kB+r)/B] =
= [r/B] + [2r/B] + ... + [nr/B] + k*(1+2+...+n)

This reduces this case to the following case.

• A < B

Let the rectangle (0,0) (n, A/B*n) be labeled P. We can easily calculate the
number of lattice points in P. We are interested in the number of lattice points
beneath it's diagonal. This can be calculated by subtracting the number of
points above the diagonal from the total number of points. The number of
points above the diagonal can be found simpler than the number of point
beneath it.
Now, by relabeling axises x and y . We reduce the second case back to the
first case. These reductions I) -> II) -> I) can only be performed a finite
number of times because the sum A + B decreases each time we solve the
first case. By following this we can compute members of (0) in O(lg n) Now
we just need to store the array in a fast data structure. It turns out using
interval / tournament tree gives the total complexity O(n lg2 n). Enough to
solve the task.

Necesarry skills:
advanced data strucutres, combinatorial geometry

Tags:
data structures, mathematics, ad-hoc

	CROATIAN OPEN COMPETITION IN INFORMATICS
	1st ROUND

