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IZBORI 

The first subtask (finding the largest number of parliament seats for a party) is solved by simulation. 

For each party, we assume it receives all outstanding votes and then use the D'Hondt method to 

calculate the number of seats won. The time complexity is O(S2·M). 

The second subtask is more difficult. The solution is based on dynamic programming and binary 

search. 

For each party we are asked to calculate the smallest number of seats it can win, assuming the least 

favourable distribution of remaining votes. Parties that initially have less than 5% of votes can win zero 

parliament seats so it is not necessary to perform further calculations for them. 

If the remaining votes can be distributed so that a party wins X seats, then they can also be distributed 

so that the party gets X+1 votes (up to the maximum calculated in the first subtask). We can use binary 

search to find the smallest such X, if we can answer the question "Is it possible to distribute the 

outstanding votes to other parties so that this party wins X or fewer seats?" 

That question can be answered by a dynamic programming algorithm. The function f(P, S) is the least 

number of votes we need to add to parties up to and including P so that all of them would win S seats 

in the parliament. In the end, all parties involved in the allocation of seats must have received at least 

5% of all votes (meaning that at most 20 of them will be considered by the algorithm). The complexity 

of this DP check is about 20·M2 steps. There will be at most log(M) checks for at most 20 parties, so 

the overall complexity is about 20·log(M)·20·M2. 

OTOCI 

Suppose that all bridges have already been built and that islands and bridges form not just a tree, but a 

chain. 

Now the number of penguins on islands can be kept in an array of integers. If we build a Fenwick tree 

or interval tree over this array of integers, we can efficiently change the number of penguins on an 

island and calculate the sum of numbers in an interval. The commands 'penguins' and 'excursion' in this 

simpler variant can be processed in O(log N) time. The command 'bridge' does not appear in this 

variant so the overall complexity is O(Q log N). 

Now let the graph be a tree. In order to efficiently process 'penguins' and 'excursion' commands, we 

need to decompose the tree into a set of chains. There are many ways to do that, one of which (called 

heavy-light decomposition) is: 

Choose an arbitrary node as the root of the tree. Now calculate for each node the number of nodes in 

its subtree. From each node with children, the child node with the largest degree is chosen and the edge 

connecting the parent and child is dubbed heavy. These heavy edges form chains. All other edges are 

called light. 

This decomposition can be found in O(N) time. An important property is that the number of heavy 

chains on the path from the root to any node is at most log2 N. This is true because, any time we step 

off a heavy chain (move down a light edge), we at least halve the number of nodes in the current 

subtree. 
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Let depth(A) be the depth of node A in the tree. 

Let dad(A) be the parent of node A. 

Let chain(A) be the chain node A is part of. 

Let first(L) be the topmost node on chain L. 

The following algorithm calculates the number of penguins between nodes A and B: 

 output = 0 

 while chain(A) ≠ chain(B): 

  if depth(first(chain(A))) < depth(first(chain(B))): 

   swap A and B 

  output = output + chain(A).count(first(chain(A)), A) 

  A = dad(first(chain(A))) 

 output = output + chain(A).count(A, B) 

In other words, while A and B are not on the same chain, take the node on the deeper chain – call that 

node A and calculate the number of penguins on that chain (from the top to node A). Then move A up 

to the first node not on that chain. Finally, when A and B are on the same chain, count the penguins 

between them. 

By decomposing the tree and building a data structure over the vertices on each chain (as in the 

previously described simpler variant of the problem), the complexity of the 'penguins' command 

remains O(log N), while the complexity of the 'excursion' command becomes O(log2 N). The overall 

complexity is O(Q log2 N). 

Now reintroduce the 'bridge' command. For each component we need to maintain some sort of 

decomposition into chains. 

Let A and B be the nodes we need to connect. Choose the smaller of the two components (suppose 

node A is in that component), make the component rooted in A and find the heavy-light 

decomposition of the tree. Now connect node A as the child of node B. This way in each component 

we still have some sort of decomposition. Unfortunately, this decomposition is not necessarily heavy-

light because the sizes of subtrees in component B change, but the decomposition of the component 

does not change. 

To fix this, we can rebuild the decomposition of a component when it becomes too unbalanced. One 

way to do this is to make the algorithm introspective – it can keep track of the number of steps needed 

to process 'penguins' commands. When this number goes over N , we find the decomposition again. 

The overall complexity of the algorithm is ).log( NNQO  
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PLAHTE 

Consider one of the sheets and how the area of stained fabric in it changes over time. Analysing various 

cases we can see that, if X squares of fabric are initially stained when the oil front hits, then X+K 

squares will be stained after a second, X+2K after two seconds etc. where K can be zero, two or four. 

This continues until the entire width or height of the rectangle is stained, after which one additional 

row or column gets stained per second (we can also recalculate X at that point and change K to zero). 

One efficient solution calculates the important time points (events), in which X and K for a sheet 

change. The time complexity of this part is O(N). Then we simulate second by second and, using the 

known data about X and K for every rectangle, we can calculate the change of area of stained fabric in 

O(1) per second. 

An alternative approach is to first fold all rectangles into the first quadrant. Then we can represent 

every rectangle as a combination of four quarter-planes extending up and right (inclusion-exclusion 

principle) and, similar as before, calculate the change of area of stained fabric in each quarter-plane. 

Representing rectangles as quarter-planes reduces the number of special cases our implementation 

needs to handle. 

 


