
PARKING 

The task can be solved by simulation. We need to keep track of how many trucks are in the rest area. 

For every minute between 0 and 100, we: 

• Add the number of trucks arriving during that minute. 

• Subtract the number of trucks departing during that minute. 

• Charge for parking based on the number of trucks parked. 

SEMAFORI 

Simulation suffices for this task too. Two parameters are relevant; where we are and what time it is. 

Until we reach the end of the road, do: 

• If there is no traffic light at the current position, increase the position and time by 1. 

• If there is a traffic light that is green, also increase the position and time by 1. 

• If there is a traffic light that is red, increase the time by 1. 

What remains is to determine the light at a traffic light at a given time index T. If T starts from zero, 

then a traffic light is red when T mod (R+G) < R, and green otherwise. 

GRANICA 

For 60% of the score an easy brute force solution was available, trying every M between 0 and 10000 

and checking whether all given integers give the same remainder when divided by M. 

For the full score, we need the following deduction: if some two numbers A and B give the same 

remainder when divided by C, then C divides A−B. So for an integer M to be part of the output, it 

must divide the differences between each pair of input numbers. The largest such M is the greatest 

common divisor of the differences between input numbers. The remaining values of M are all divisors 

of the largest M (except for 1). 



GEORGE 

We model the city as an undirected weighted graph. When Mister George traverses an edge, we can 

consider the weight of that edge to change over time. For example, if Mister George enters a street 

during minute 10 and the street has weight 5, then the weight changes like this: 

Time 9 10 11 12 13 14 15 

Weight 5 10 9 8 7 6 5 

After thinking about it, we conclude that the problem can be solved with Dijkstra's shortest path 

algorithm, with the weight of an edge depending on when we use it. For implementation details see the 

official source code. 

PRINCEZA 

Suppose we store in one linked list the points sorted by the sums of their coordinates (breaking ties by 

x-coordinate), and in another linked list we store the points sorted by the differences of their 

coordinates (again breaking ties by x-coordinate). Additionally, for each point we keep a pointer to its 

position in each list. 

Imagine the frog is located in some point (x, y) and that the next direction to process is A. The next 

point in direction A is of the form (x+P, y+P) for a positive integer P. So, if it exists, the next point has 

the same difference of coordinates as the current point, and its x-coordinate is larger than the x-

coordinate of the current point. Observe that the next point is exactly the successor of the current 

point in the second list. If the current point has no successor or the successor doesn't have the same 

difference of coordinates, the jump will not occur. If the jump occurs, delete the current point from 

both lists and move to the next point. 

Similar reasoning can be applied to all four directions. 

CESTARINE 

Let us first solve the problem without the constraint that a driver may not use his ticket at the same exit 

where the ticket was issued. Because the tickets may be exchanged arbitrarily, any driver can obtain any 

ticket. It is easy to see that the optimal solution is to sort the tickets, sort the drivers by their desired 

exits, and give the drivers tickets in order. 

What if a driver gets a ticket issued at the same exit he needs to use? The best action would be for him 

to swap his ticket with one of his colleagues next to him in the sorted sequence, which is always 

possible. But what if, as in the second example test case, two drivers want to exchange tickets with the 

same driver? Then we need to allow them to exchange tickets not only with immediately adjacent 

drivers, but also those 2 indices away in the sorted sequence. From this analysis we obtain a dynamic 

programming solution. 

Let dp[n] be the cost of the optimal distribution of tickets for all drivers up to driver n (the drivers are 

sorted by their exits). Let distribution(n, k) be the cheapest distribution of tickets in positions n, n−1, 

..., n−k to drivers in positions n, n−1, ... n−k. There are (k+1)! possible distributions, but because k will 

be at most 2, we can check every one and select the distribution which results in the least total cost. 

The DP relation is:  

dp[n] = min{ dp[n−k−1] + distribution(n, k) for k ∈  [0, 2] } 

The solution is dp[N]. 


