
BIJELE 

For each of the six input numbers, we output the expected number of pieces minus the input number. 

CRNE 

If Mirko makes H horizontal and V vertical cuts, Slavko's board will fall apart into (H+1)·(V+1) pieces. 

The first solution uses two nested for-loops to try all possible values of H and V (such that their sum is 

not greater than N) and outputs the largest product. 

The second solution is to notice that it never makes sense to make less than N cuts, and loops over all 

values of H, and uses the expression N−H for V. 

The third solution doesn't use any loops, instead observing that the product will be the largest if H and 

V are as close as possible. The actual expressions are H = N div 2, V = (N+1) div 2. 

PRVA 

We need to find all words in the crossword and choose the lexicographically smallest one. A vertical 

word starts in a square if that square is on the first row or if the square above it is blocked, and a 

horizontal word starts if a square is in the first column or if the square to its left is blocked. 

To check if a string A is lexicographically less than string B in the programming language C we can use 

the expression strcmp(A, B) < 0, and in Pascal and C++ (assuming A and B are variables of type 

string) simply A < B. 

TURBO 

When the number of elements N is small, it's possible to simulate the algorithm swap by swap. The 

complexity of this algorithm is O(N2), and it will surely work for N up to 5000, and the problem 

statement guarantees that in most of the test cases it will be at most 100.  

For longer arrays we need an algorithm more efficient than simulation. Suppose in some phase the 

number X is to be moved to its final position. The number of swaps in that phase is the difference 

between the current and final positions of X. The final position is known, it is exactly X, but the 

current position isn't. 

The current position of X can be calculated from its starting position, provided sufficient information 

about numbers moved in previous phases. More precisely, each number moved in an odd phase (when 

numbers are moved to the left) that was initially to the right of X "jumped over" X during its phase and 

because of this X moved one place to the right. Similarly, each number moved in an even phase that 

was initially to the left of X will move X one place to the left. 

These two numbers (how much X has moved left and right) can be efficiently calculated (in logarithmic 

complexity) using two Fenwick trees; one for odd phases and one for even phases. There is also a 

similar solution which uses only one Fenwick tree. Such a solution is implemented in the official source 

code. 

Whenever a task includes smaller and larger constraints with algorithms of vastly different 

implementation complexity to solve them, it is a good idea to include both algorithms in the source 

code, and determine which one to use at runtime, depending on N. That way, if there is an error in the 

more complex algorithm, we don't lose points on the smaller test cases. 



KEMIJA 

For smaller inputs (all numbers up to 100) we can try all possible pairs of values for the first two 

numbers in the ring (which uniquely determines all remaining numbers), calculate all remaining 

numbers and check if the ring generated by adding neighbours to a number is equal to the input ring. 

For larger rings, the solution is much more complex. Label the numbers in the first ring A1 to AN, and 

the second ring B1 to BN. We need to find a ring A such that it generates ring B, and that all numbers in 

it are positive. 

First, notice that the sum of ring A must be exactly one third of the sum of ring B. 

Also, from the input ring we can determine for each position k the difference Ak+3−Ak = Bk+2−Bk+1. 

This, with the sum of ring B, suffices to solve the task. 

When the length of ring N is not divisible by 3, the solution is unique. Suppose the first element of the 

ring (A1) equals 1. From the calculated differences we determine A4, A7, ..., AN−2. Because N is relatively 

prime to 3, we will have determined all numbers A2 to AN before returning to A1. We just need to 

ensure that the sum of ring A is appropriate (one third of the sum of ring B). For this it suffices to add 

to each element of A the value of the expression [ sum(B)/3 − currentsum(A) ] / N. 

When N is divisible by 3, the solution is not unique and it is less obvious how to ensure that the 

numbers are positive. This time the differences generate three separate "chains": 

• A1, A4, ..., AN−2; 

• A2, A5, ..., AN−1; 

• A3, A6, ..., AN. 

We need to determine the numbers A1, A2 and A3 (and increase the numbers in their respective chains 

so that the differences are right) so that all numbers are positive and that the sum of ring A is correct. It 

is not hard to show that a ring which satisfies this generates the input ring B. 

For each of the chains it is possible to determine the smallest possible value of the first number so that 

all numbers in the chain are positive. For example, if the differences generate the chain 1, −4, 5, then 

we need to add at least 5 to all numbers so that all numbers are positive. 

We can set A1 to the smallest value so that the first chain is positive (in the previous example A1 would 

be 6) and similarly for A2 and the second chain. A3 is uniquely determined by the expression B2−A1−A2. 



PRAVOKUTNI 

We need to find an algorithm of complexity better than O(N3). Here we will describe three such 

algorithms. 

The basic idea of the first one is: choose the point in which the angle will be right, fix one other point 

in the triangle and quickly calculate how many of the remaining points form a right triangle with the 

first two points. The algorithm is based on the so-called canonical representation of a line. Each line 

can be, regardless of which two points it is generated from, transformed into a unique form. For a pair 

of points we use the usual formulas to calculate three integers A, B and C such that Ax + By + C = 0. 

The equation can be multiplied by a constant, because this doesn't change the line it represents. Now 

divide A, B and C by their greatest common divisor so that they become relatively prime, and also 

negate the entire equation if the first non-zero number is negative. With this we can build a 

function/map f(line), which tells us how many points are on a line. Now it is easy to implement the 

idea from the start of this paragraph, and using appropriate date structures, the complexity will be 

good. 

The second algorithm, after choosing the first point (where the right angle will be), sorts the remaining 

points around it by angle. Now we can use two variables (the so-called "sweep" method) to count all 

right triangles. We move the first variable point by point, and have the second one 90 degrees ahead of 

it, moving forward, trying to form right triangles with the first variable. 

The third algorithm is different from the first two, but also easier to implement. Choose a point P and 

translate the coordinate plane so that the point P is the origin (more precisely, subtract the coordinates 

of point P from every point). Now, for each point, first determine which quadrant it is in, and then 

rotate it by 90 degrees until it is in the first quadrant. After that, sort all points by angle (y divided by x). 

Two points form a right triangle with point P if they have the same angle and if they were in 

neighbouring quadrants before rotating. After sorting, for each set of points with the same angle, count 

how many of them were in each of the four quadrants and multiply the numbers for neighbouring 

quadrants. 

The complexity of all three algorithms is O(N2·logN). The official source code features the last 

algorithm. 


