
SIBICE

Since the box is of rectangular shape, the longest possible match is the same length as the diagonal of
the box. A match fits in the box if W2 + H2 ≥ L2, where L is the length of the match.

SKENER

Using two for loops over the dimensions of the enlarged image (call the indices i and j), we print the
character at position i/ZR, j/ZS in the original image (integral division, truncates towards zero).

PRSTENI

The number of times the i-th ring turns depends only on its radius and the radius of the first ring. The
sought ratio is Ri / R1. Reducing the fractions can be done by dividing the numerator and denominator
by their greatest common divisor, given by the recursive formula:

⎩
⎨
⎧

≠
=

=
0),mod,(
0,

),(
bwhenbabGCD
bwhena

baGCD

ZBRKA

This problem is solved using dynamic programming. Let f(n, k) be the number of sequences of length n
with confusion k.
The number of such sequences that start with the number 1 is f(n-1, k) because the 1 does not affect
the confusion of the rest of the sequence and it makes no difference if we use numbers 1..n-1 or 2..n.
If 1 is the second number, then f(n, k) = f(n-1, k-1) because whichever element is first, it will form a
confused pair with the 1. It's easy to see that the complete relation is:

 . ∑
−

=

−−=
1

0
),1(),(

n

i
iknfknf

The time complexity of a direct implementation of this formula (using dynamic programming) would
be O(N2·K), which is too slow.
We need to note that f(n, k) = f(n, k-1) + f(n-1, k) – f(n-1, k-n), which leads to a O(N·K) solution. It is
also possible to cut down on the memory used by keeping only two rows of the matrix used for
calculations at any time.

JOGURT

There's more than one way to solve this problem, we present one of them.
Let's try to extend a tree of depth n for which the property is satisfied to a tree of depth n+1 for which
the property is satisfied. Have the root node of the new tree contain the number 1 and put two copies
of the old tree as its left and right subtrees, only multiplied by 2. Now the subtrees contain only even
numbers and each appears twice between the two subtrees. The property is still satisfied in the subtrees;
multiplying the elements by two caused the differences to be multiplied by two, but the depths of those
nodes increased by one so this is good.
Add 1 to all leaf nodes in the left subtree and to all non-leaf nodes in the right subtree. Now each
element appears only once in the entire tree. The property is still satisfied in the subtrees because
adding a constant to all nodes on the same level in a subtree does not change the differences. The

property holds for the root node because we added 2n to the left subtree and to the right

subtree so the difference is 1.

122
1

0
−=∑

−

=

n
n

i

i

ISPITI

We're looking to design a data structure that holds pairs of numbers and can answer queries of the
form "Which pair has both numbers larger than a given pair, but so that the second number differs by
as little as possible?". One such data structure is an order-statistic tree (also called tournament tree).
In general, a tournament tree is a complete binary tree whose leaves hold data, while each node higher
in the tree holds some desired statistic about the leaf nodes contained in the subtree rooted at that
node: for example the smallest number, largest number, sum of numbers etc.
In this problem we'll have the nodes hold the largest number in their subtree. The root node thus holds
the largest number of all the leaves, its left child holds the largest in the first half of the sequence etc.
The tree is stored in an array so that the children of node x are at indices 2x and 2x+1. The parent of
node x is x/2 (division truncates).
When adding the pair (a, b) to the tree, we write the value a on the b-th leaf node, and climb up the
tree, updating the higher nodes.
The tree can tell us the first number larger than the one in leaf node x, located in the tree to the right of
node x. The algorithm is:

• Start from the root node (consider the entire tree)

• Repeat:
o If x is not in the subtree rooted at the current node, then none of these nodes are right

of x so there is no solution in that subtree
o If x is in the right subtree, move to that subtree (no nodes in the left subtree are right of

x)
o Otherwise (x is in the left subtree), if the left subtree contains a number larger than x,

try to find the first one right of x (recursive call) – otherwise, find the leftmost number
larger than x in the right subtree

It takes some convincing, but working out the cases reveals that the complexity of one query is O(log
N), so the complexity of the entire algorithm is O(N·log N).
One final observation is that the numbers b are too large to be held in the tree. This can be remedied
by sorting all students by the number b, then replacing all numbers b with the indices in the sorted
sequence: the smallest number b is changed to 1, the second smallest by 2 etc. We can do this because
the rest of the algorithm only cares about their relative ordering, not the absolute values. This
procedure is referred to as compressing the input data.

