
Baltic Olympiad in Informatics
27 Apr – 2 May, 2019
Tartu, Estonia

Day: 2
Task: olymp

Version: en-1.0

Olympiads Spoiler

Subtask 1 was intended to be done with two nested loops.

Subtask 2 was intended to be done with exhaustive search (but due to low K can also be done
with 6 nested loops).

Subtask 3 was intended to be done with a Brute Force on the scores for each event, and then
another brute force to find the actual teams. The search was supposed to be done in decending
order of total scores and stopped when C teams have been processed.

For constructing the full solution, the time constraints have been set to allow multiple different
solutions to pass. The trick here is to perform the search in a manner such that higher total scores
will be processed before lower ones. It’s possible to solve it with A*, or bounded Brute Force
on event scores, however a very fast and elegant solution utilizes something called ”Fracture
Search”.

In principle, fracture search works in the following manner:

1. Pick some team B = (B1, . . . , BK) that gives the best total score.

2. Divide the search space into some number of subspaces such that the subspaces are disjoint
and together cover all elements except B.

3. From the ”unfractured” search spaces, pick the one where the best team has the highest
total score. Repeat the fracture search on that subspace.

For this problem, the search space can be fractured into the following subspaces:

1. Contestant B1 is excluded.

2. Forced to use contestant B1, contestant B2 is excluded.

. . .

K. Forced to use contestants B1, . . . , BK−1, contestant BK is excluded.

It’s easy to see that the subspaces are disjoint and cover all teams except B. Next we can make
our approach even more elegant by picking the best team in the following manner:

1. Contestant B1 is the one that has the best score in event 1.

2. Contestant B2 is the one among those that haven’t already been picked that has the best
score in event 2.

. . .

K. Contestant BK is the one among those that haven’t already been picked that has the best
score in event K.

It’s easy to see that this always gives the best team. It’s also good because in the subspaces if
you are forced to use contestants B1, . . . , BS , then they also correspond to the first S contestants
picked by the above approach in the same order. This combination makes our fracture search
relatively easy to perform.

Published under the CC BY-SA 4.0 license 1/2



Baltic Olympiad in Informatics
27 Apr – 2 May, 2019
Tartu, Estonia

Day: 2
Task: olymp

Version: en-1.0

from heapq import heappush, heappop
from collections import namedtuple
from copy import copy

Shard = namedtuple(’Shard’, [’score’, ’best’, ’forced’, ’forbitten’])

n, k, c = [int(x) for x in input().split(’ ’)]
scores = [[int(x) for x in input().split(’ ’)] for i in range(n)]

def pairwise max(a, b):
return [max(a[i], b[i]) for i in range(len(a))]

def evaluate shard(shard):
best = []
event best = [0] ∗ k
for x in shard.forced:

best.append(x)

for i in range(len(shard.forced), k):
best.append(−1)
for j in range(n):

if not shard.forbitten[j] and j not in best:
if best[i] == −1 or scores[j][i] > scores[best[i]][i]:

best[i] = j

for c in best:
event best = pairwise max(event best, scores[c])

return(Shard(−sum(event best), best, shard.forced, shard.forbitten))

heap = [Shard(0, [], [], [False]∗n)]
heap[0] = evaluate shard(heap[0])
results = []

while len(results) < c:
top = heappop(heap)
results.append(−top.score)

new forced = copy(top.forced)
new forbitten = copy(top.forbitten)

for i in range(len(top.forced), k):
new forbitten[top.best[i]] = True
new shard = evaluate shard(Shard(0, [], copy(new forced), copy(new forbitten)))
if −1 not in new shard.best:

heappush(heap, new shard)
new forced.append(top.best[i])

print(results[c−1])

Credits

• Task: David Narum (Norway)

• Solutions and tests: Oliver-Matis Lill, Andres Unt (Estonia), David Narum (Norway)

Published under the CC BY-SA 4.0 license 2/2


