
Demarcation spoiler

Spoiler by Karolis Kusas

First of all, let’s introduce some operations which are used in each subtask.

1. Rotate - the figure is rotated 90 degrees around the axes origin. This is done by
swapping x and y coordinates and negating the y coordinate of each point.

2. Move - the figure is moved in the way that the leftmost (and lowermost if there are
many) point is moved to the axes origin.

3. Reflect - the figure is reflected by negating the y coordinate of each point.

4. Compare - checking whether two figures are congruent. This is done by moving
the first figure and rotating, moving the second figure (four times) and each time
checking if both sets of points are equal. If no, then it is tried to reflect the second
figure and run the same operations once again. If this is unsuccessful, then the
figures are not congruent.

Additionally, it is needed to implement a function which cuts the figure along the
given segment. The result of this function - two new figures.

The main idea - when considering two figures, they can be congruent only if they
are of equal perimeters or areas. There are at most one horizontal and one vertical
segment cut that gives such two figures. It can not cross any other edges of the polygon.
Otherwise, there may be many segments.

Moreover, we can solve the problem considering only the vertical cuts. We can rotate
the polygon and use the same solution - the horizontal cuts will be considered too.

Partial solutions

Subtask 1 (12 points). 4 ≤ N ≤ 100000. Any horizontal or vertical
line that divides the polygon divides it into exactly two parts.

We can see that it is possible to apply the binary search to find the x coordinate of the
cut. If the left perimeter is bigger that the right, we consider the left part, if the left
perimeter is smaller, we consider the right part. If they are equal, we get the end points
of the cut. Then we cut the figure and compare the parts.
The complexity of this algorithm is O(n · log(xmax − xmin)).

1



Subtask 2 (15 points). 4 ≤ N ≤ 200.

Let’s loop over all pairs of horizontal edges. In each loop, calculate the sum of lengths
of edges between these edges. Get the x coordinate of a cut which divides the polygon
into two parts. Check whether this segment intersects other edges. If no, then make a
cut and compare the parts.
The complexity of this algorithm is O(n3).

Subtask 3 (23 points). 4 ≤ N ≤ 2000.

We can easily improve the algorithm which was used in the previous case by precomputing
the prefix sums of lengths of edges.
Other more sophisticated algorithm uses two pointers paradigm.
Firstly, we set both pointers (E and F ) to point to any horizontal edge. We keep variables
A and B (distances between the edges pointed by E and F from the both ends). While
edgeLength(E) + edgeLength(F ) ≥ A − B we move pointer F to the next horizontal
edge, otherwise we move pointer F to the previous edge and E to the next edge. Before
moving pointers, we try to find the x coordinate of a cut whose ends are on these edges and
which divides the polygon into two figures of equal perimeters. Then we check whether
this segment intersect other edges. If no, then make a cut and compare the parts.
The complexity of both algorithms is O(n2).

Subtask 4 (50 points). 4 ≤ N ≤ 100000.

There are two main ways to implement an effective algorithm (based on equal perimeters
or equal areas). We will describe the first one.
The idea is to use line sweep paradigm.
Make events for all edges which include following information: the x coordinate (the end
of the horizontal edge), the y coordinate of the edge, the index of the edge, two status
variables which show whether this is the left or the right end and the orientation of the
edge.
Also let’s keep a set with the y coordinates and some additional information for all edges
intersected by the cut with the given x coordinate.
When processing each event we find the influenced edge in the set and the uppermost
lower edge as well as the lowermost upper edge. Then we calculate the x coordinates of
possible segment cuts. If we find any, we insert it to the queue of events. When our x
sweep line hits that x coordinate, we check whether the segment ends (two y coordinates)
are still neighbours (one immediately after another) in the set. If yes, we can perform
a standard check with this segment cut. Furthermore, we are guaranted that it won’t
intersect any other edges.
The complexity of this algorithm is O(n · logn).

2


