
BOI 2011
Copenhagen, Denmark
April 29 – May 3, 2011

Day 1
ENG
grow

Page 1 of 2

Growing Trees

Egon takes care of a garden with N apple trees. His responsibilities include two types of tasks:
fertilizing the trees and computing some statistics about them.

For fertilizing the trees he has several bottles of MegaBoostFertilizer, which, when treated on trees,
causes them to grow one centimeter up instantly. Every bottle has a limited capacity ci, which deter-
mines the number of trees it can be applied to. Moreover, for each bottle there is a minimal height hi
of trees, which can be treated with it. Since Egon wants to have all his trees as big as possible, he al-
ways applies the fertilizer to the ci smallest trees chosen from the trees that are at least hi centimeters
high.

When Egon computes statistics about trees he has to determine the number of trees whose height is
in some given interval. Egon is quite busy working in the garden, so he asked you to write a program,
that given the list of his tasks, computes the statistics for him.

Input

The first line of the standard input contains two integers N and M denoting the number of trees in
Egon’s garden and the number of his tasks. The second line contains a sequence of N integers from
the range [1, N] describing the initial heights of the trees in centimeters. The following M lines
describe the tasks in chronological order. Each of those lines begins with a character ti (ti = F or
ti = C), which describes the type of the task.

If ti = F then two integers ci and hi follow. Such a line means that Egon applies a bottle of Mega-
BoostFertilizer to the ci smallest trees among those trees that are at least hi centimeters high. When
there are less than ci trees of sufficient height, he applies the fertilizer to all such trees and discards
the bottle with some fertilizer remaining.

If ti = C then two integers mini and maxi follow. They denote that Egon has to compute the number
of trees whose height H is between mini and maxi centimeters (mini ≤ H ≤ maxi).

Output

For every task of type C, output one line containing the number of apple trees that have the required
height. The order of the results should conform to the order of type C tasks in the input.

Constraints

1 ≤ N,M ≤ 100 000;
1 ≤ ci ≤ N , 0 ≤ hi ≤ 1 000 000 000;
1 ≤ mini ≤ maxi ≤ 1 000 000 000.
In test cases worth 40 points 1 ≤ N ≤ 7 000 and the number of type F tasks is at most 7 000.

BOI 2011
Copenhagen, Denmark
April 29 – May 3, 2011

Day 1
ENG
grow

Page 2 of 2

Example

Input Output
5 7
1 3 2 5 2
F 2 1
C 3 6
F 2 3
C 6 8
F 2 1
F 2 2
C 3 5

3
0
5

BOI 2011
Copenhagen, Denmark
April 29 – May 3, 2011

Day 1
ENG

icecream
Page 1 of 1

Ice Cream

Rasmus and his friends are on vacation in Italy. Since they are suffering from the heat, they decide
to buy some ice cream. There are N flavors of ice cream available; flavors are numbered from 1 to
N . However, some pairings of flavors should be avoided; otherwise, the taste would be unpleasant.
Rasmus wants to know how many ways there are to choose three different flavors without any such
impossible pairing. The order of flavors is not taken into account.

Input

The first line of input contains two non-negative integers N and M , the number of flavors and the
number of impossible pairings. Each of the M following lines describes an impossible pairing and
contains two different flavor numbers. No impossible pairing will appear twice.

Output

The first and only line of output must contain a single integer: the number of possible choices.

Constraints

1 ≤ N ≤ 200.
0 ≤ M ≤ 10 000.

Example

Input Output
5 3
1 2
3 4
1 3

3

There are 5 flavors and 3 impossible pairings. Flavor 1 should be combined with neither flavor 2 nor
flavor 3, and flavor 3 also should not be chosen together with flavor 4. Only 3 ways to choose three
different flavors remain: (1 4 5), (2 3 5), and (2 4 5).

BOI 2011
Copenhagen, Denmark
April 29 – May 3, 2011

Day 1
ENG
lamp

Page 1 of 2

Switch the Lamp On

Casper is designing an electronic circuit on a N ×M rectangular grid plate. There are N ×M square
tiles that are aligned to the grid on the plate. Two (out of four) opposite corners of each tile are
connected by a wire.

A power source is connected to the top left corner of the plate. A lamp is connected to the bottom
right corner of the plate. The lamp is on only if there is a path of wires connecting power source to
lamp. In order to switch the lamp on, any number of tiles can be turned by 90◦ (in both directions).

In the picture above the lamp is off. If any one of the tiles in the second column from the right is
turned by 90◦, power source and lamp get connected, and the lamp is on.

Write a program to find out the minimal number of tiles that have to be turned by 90◦ to switch the
lamp on.

Input

The first line of input contains two integer numbers N and M , the dimensions of the plate. In each of
the following N lines there are M symbols – either \ or / – which indicate the direction of the wire
connecting the opposite vertices of the corresponding tile.

Output

There must be exactly one line of output. If it is possible to switch the lamp on, this line must contain
only one integer number: the minimal number of tiles that have to be turned to switch on the lamp. If
it is not possible, output the string: NO SOLUTION

BOI 2011
Copenhagen, Denmark
April 29 – May 3, 2011

Day 1
ENG
lamp

Page 2 of 2

Constraints

1 ≤ N,M ≤ 500.
In test cases worth 40 points, 1 ≤ N ≤ 4 and 1 ≤ M ≤ 5.

Example

Input Output
3 5
\\/\\
\\///
/\\\\

1

The example input corresponds to the picture.

BOI 2011
Copenhagen, Denmark
April 29 – May 3, 2011

Day 1
ENG

vikings
Page 1 of 2

Treasures and Vikings

You have a treasure map that is arranged into a N×M grid. A grid square may be either sea or part of
an island. In addition, the map shows the treasure and an enemy Viking ship that occupies one (sea)
square. Finally, for convenience you have also drawn your own position.

Now you must set up a fixed route to get the treasure. The route must start at your position, end at
the treasure, and consist of a sequence of moves. In each move, you can go only to an (horizontally
or vertically) adjacent square that is not part of an island. But beware: The Viking ship might follow
you, using the same kind of moves! After each of your moves according to your route, the Viking
ship may move or not. Your move and the Vikings’ reaction together is called a round.

After every round, the following checks are made:

• If you are in line with the Viking ship (you are in the same vertical or horizontal line as the
Viking ship with only sea between the Viking ship and you), you are dead.

• If you aren’t dead and at the treasure-spot, you get the treasure.

Write a program that decides whether it is possible to set up a fixed route in advance such that you
can get the treasure by following this route and will not get killed by the Vikings – no matter how the
Viking ship moves.

Input

The first line of input contains two integers N and M , the dimensions of the map. Each of the
following N lines contain M characters. Each character describes a square in the map, and is either
. (sea), I (part of an island), V (the Viking ship), Y (your position), or T (the treasure). Each of V, Y,
and T will occur exactly once.

Output

The only line of the output must contain the string YES, if it is possible to set up a route to get the
treasure, or NO otherwise.

Constraints

1 ≤ N,M ≤ 700.
In test cases worth 50 points, 1 ≤ N,M ≤ 200.

BOI 2011
Copenhagen, Denmark
April 29 – May 3, 2011

Day 1
ENG

vikings
Page 2 of 2

Example

Input Output
5 7
Y.....V
..I....
..IIIII
.......
...T...

YES

5 7
Y....V.
..I....
..IIIII
.......
...T...

NO

2 3
.YT
VII

NO

In the first example, the following route will let you get the treasure:
Down, Down, Down, Right, Right, Right, Down.
In the second and third examples, there is no route to the treasure that you will survive.

