

Fifth Baltic Olympiad in Informatics
__

 3

DELIVERY (FIN)

There is a large amount of packets that need to be delivered, within a certain time limit if

possible. There are two vehicles available for making the deliveries, a small van and a large
lorry.

Each packet is either small or large. A small packet can be delivered either with the van or with
the lorry, but a big one requires the lorry. For each packet we know the amount of time it would
take to deliver it; we call this the time requirement of the packet. One vehicle can deliver only
one packet at a time.

We are also given a deadline, which is the total amount of time within which we should deliver
as many packets as possible. We do not care about what happens after the deadline

Thus, from our point of view, the deliveries take place as follows.
• A certain amount of small packets will be delivered by the van, and the total time

requirement of these packets must not exceed the deadline, and
• a certain amount of small and large packets will be delivered by the lorry, and the total

time requirement of these packets must also not exceed the deadline.
The task in this problem is to determine the largest total amount of packets that can be

delivered in this manner.

Input data

The input will be in the file DELIVERY.IN.
The first input line contains a single integer T (1 ≤ Τ ≤ 1000) - the deadline.
The second input line contains a single integer N (1≤ Ν≤500) - the total number of small

packets.
The input lines 3 through N+2 each contain a single integer between 1 and 1000 (inclusive).

These are the time requirements of the small packets. Time requirements are given in ascending
order.

The input line number N+3 contains a single integer M (1≤Μ≤500) - the total number of large
packets.

The input lines N+4 through N+M+3 each contain a single integer between 1 and 1000
(inclusive). These are the time requirements of the large packets. These time requirements are
also given in ascending order.

Output data

The only line of the output file DELIVERY.OUT should contain a single integer - the largest
number of packets that can be delivered within the deadline.

Example
Input data(file DELIVERY.IN) Output data(file DELIVERY.OUT)
10 8
8
2
2
2
2
2
4
4
4
4
3
3
6
6

The deadline is 10 time units. There are 8 small
packets: 5 with time requirement 2 and 3 with time
requirement 4. There are 4 large packets, 2 with time
requirement 3 and 2 with time requirement 6.
The 8 packets can be delivered in 10 time units by
delivering the small packets with time requirement 2
with the van, and using the lorry to deliver one small
packet with time requirement 4 and 2 large packets
with time requirement 3.

Fifth Baltic Olympiad in Informatics
__

 6

NEW FUN (LAT)

Programmers often are asked to rewrite old program and the new program version must keep
its functionality. It is nice, if such program is well documented and source code is available. But
not always life is so lucky.

You must rewrite earlier written function FUN about which is known the following:
1) FUN's arguments are 4 positive integers a1,a2,a3 and a4,
2) FUN's value is one of its arguments values,
3) FUN realizes one function of the following kind:

IF ai op aj THEN FUN:=ak ELSE FUN:=am ;
where possible op values are < , ≤ , > , ≥ , = , ≠ , and 1 ≤i,j,k,m≤4.
If i=1, j=2, k=4, m=1, and op is '≠', then function

IF a1≠a2 THEN FUN:=a4 ELSE FUN:=a1; (¶)
is realized and we will obtain, for example, FUN(2,1,1,3) = 3, FUN(4,4,2,3) = 4.

It is known, that in practice the existing version is too slow and works properly only if its
argument values doesn't exceed 5. You are asked to write a new function version which have to
work properly for all positive integer values which doesn't exceed 32767.

Old FUN version is written so, that this, exactly which function is realized depends on data
file in the current catalog FUN.DAT - so it will not be enough if you will write version for one
fixed FUN.DAT. New version must work properly for any valid FUN.DAT .

Your program will always work in the same environment as old FUN, so you, for example,
may include in your program old FUN calls (of course, keeping in mind restrictions for argument
values). You can asume that in the current catalog always will be valid file FUN.DAT and your
new program never will be used without it.

You must write program which realizes the same function as old FUN (for any valid
FUN.DAT) and for argument values given in input file counts function values and output them
to output file.
Input data

In the first line of text file NEWFUN.IN number of argument sets N (1≤N≤1000) is given. In
the each of the following N lines one argument set (four positive integer values separated by
single space characters) is given. All argument values are less or equal to 32767.
Output data

Text file NEWFUN.OUT must contain exactly N rows. In the i-th file row one positive
integer - "new FUN" value for i-th argument set must be written.
Environment and example

On your diskettes files which realize old FUN (FUNIT.TPU, FUNIT.OBJ, FUNIT.H,
FUN.DAT) are given. Given FUN.DAT corresponds to function described earlier in example
(¶). In the files MAIN.PAS, MAIN.C and DEMO.PRJ old FUN version call examples are
given.

Input data (File NEWFUN.IN) Output data(File NEWFUN.OUT)
5 3
2 1 1 3 4
4 4 2 3 32766
32767 1 1 32766 6
6 6 6 6 10
7 8 9 10

Remark: In the given example the last three sets will not be processed properly by old FUN

version.

Fifth Baltic Olympiad in Informatics
__

 7

THE MOBILE (SWE)

In figure 1 you can see a mobile in perfect balance. The mobile have five weights 1 kg, 2 kg ... 5
kg. The distance between two marks is 1 m. You can check the balance through this calculation

 -3·3 + -1·5 + 2·(1+2+4)=0
 -2·1 + -1·2 + 1·4=0

When you get a mobile problem you will get the stucture of the mobile from a character string.
The mobile in figure 1 is described in this way

 (-3,-1,2(-2,-1,1))

You have to calculate the weights and give the answer as another character string. From figure 1
with the five weights the answer is

 (3,5,(1,2,4))

You will now write a program reading a description of a mobile from an input file, calculate the
weights and writing the answer to an output file.

• If there are n weights in the mobile you must use the weights from 1 kg to n kg exactly once
• n ≤17
• The input string will be given as a single line in the input file MOBILE.IN. All numbers are

integers which values are between -50 and 50 (inclusive).
• The output string will be given as a single line in the output file MOBILE.OUT, without extra

spaces.
• You can assume that for each given test data at least one solution exists. If more than one

solution is possible, you must output one of them.

Here you will have two additional examples with input and output string.

Fifth Baltic Olympiad in Informatics
__

 8

Input data (file MOBILE.IN)
(-3(-1(-1(-1,1,2),3),2),3(-2,1,2),6(-2,3))

Output data (file MOBILE.OUT)
((((8,6,1),5),10),(9,4,7),(3,2))

Input data (file MOBILE.IN)
(-8,-4(-5,-3,-1,1),-2(-1,1,3),2(-1(-3,-2,1(-2,1,3)),1,3),6)

Output data (file MOBILE.OUT)
(10,(1,2,4,15),(14,5,3),((6,8,(16,11,7)),9,13),12)

