
KTH Challenge 2020

Solutions

2020-04-25

G - Triple Texting

Given string repeated three times with possible error, recover it.

Proposed & prepared by Nils Gustafsson

G - Triple Texting

Given string repeated three times with possible error, recover it.

acceptedaxceptedaccepted

Proposed & prepared by Nils Gustafsson

G - Triple Texting

Given string repeated three times with possible error, recover it.

acceptedaxceptedaccepted

accepted

axcepted

accepted

1: split input into three strings

Proposed & prepared by Nils Gustafsson

G - Triple Texting

Given string repeated three times with possible error, recover it.

acceptedaxceptedaccepted

accepted

axcepted

accepted

2: sort the three strings

Proposed & prepared by Nils Gustafsson

G - Triple Texting

Given string repeated three times with possible error, recover it.

acceptedaxceptedaccepted

accepted

axcepted

accepted

3: output the middle one

Proposed & prepared by Nils Gustafsson

F - Proofs
Proposed & prepared by Joseph Swernofsky

Given assumptions used and conclusions in each step of a
proof, check if correct.

F - Proofs
Proposed & prepared by Joseph Swernofsky

Given assumptions used and conclusions in each step of a
proof, check if correct.

1. Keep dictionary of already proved conclusions.

F - Proofs
Proposed & prepared by Joseph Swernofsky

Given assumptions used and conclusions in each step of a
proof, check if correct.

1. Keep dictionary of already proved conclusions.

2. For each line, look up assumptions in dictionary (if any
missing, we found error), then add conclusion to dictionary

F - Proofs
Proposed & prepared by Joseph Swernofsky

Given assumptions used and conclusions in each step of a
proof, check if correct.

1. Keep dictionary of already proved conclusions.

2. For each line, look up assumptions in dictionary (if any
missing, we found error), then add conclusion to dictionary

Time complexity O(n · dictionary lookup time)

Make sure to use data structure with fast lookup time to avoid quadratic
running time.

A - AI Jeopardy
Proposed & prepared by Per Austrin

Given X ≤ 10100, find smallest n and k such that
(
n
k

)
= X.

A - AI Jeopardy
Proposed & prepared by Per Austrin

Given X ≤ 10100, find smallest n and k such that
(
n
k

)
= X.

Idea: n could be huge, but k cannot.

A - AI Jeopardy
Proposed & prepared by Per Austrin

Given X ≤ 10100, find smallest n and k such that
(
n
k

)
= X.

Idea: n could be huge, but k cannot.

Smallest possible value of
(
n
k

)
for a fixed k is

(
2k
k

)
≈ 22k.

A - AI Jeopardy
Proposed & prepared by Per Austrin

Given X ≤ 10100, find smallest n and k such that
(
n
k

)
= X.

Idea: n could be huge, but k cannot.

Smallest possible value of
(
n
k

)
for a fixed k is

(
2k
k

)
≈ 22k.

So must have k ≤ O(logX)

A - AI Jeopardy
Proposed & prepared by Per Austrin

Given X ≤ 10100, find smallest n and k such that
(
n
k

)
= X.

Idea: n could be huge, but k cannot.

Smallest possible value of
(
n
k

)
for a fixed k is

(
2k
k

)
≈ 22k.

Algorithm: try all possible values of k, and for each value
binary search for n.

So must have k ≤ O(logX)

A - AI Jeopardy
Proposed & prepared by Per Austrin

Given X ≤ 10100, find smallest n and k such that
(
n
k

)
= X.

Idea: n could be huge, but k cannot.

Smallest possible value of
(
n
k

)
for a fixed k is

(
2k
k

)
≈ 22k.

Algorithm: try all possible values of k, and for each value
binary search for n.

So must have k ≤ O(logX)

Time complexity is O(log(X)4).

A - AI Jeopardy
Proposed & prepared by Per Austrin

Given X ≤ 10100, find smallest n and k such that
(
n
k

)
= X.

Idea: n could be huge, but k cannot.

Smallest possible value of
(
n
k

)
for a fixed k is

(
2k
k

)
≈ 22k.

Algorithm: try all possible values of k, and for each value
binary search for n.

So must have k ≤ O(logX)

(because computing a single binomial coefficient
(
n
k

)
takes

O(k log(n)) = O(log(X)2) time)

Time complexity is O(log(X)4).

D - Gaggle
Proposed & prepared by Per Austrin

Transform function graph into a cycle, try to
preserve out-edges from lower-numbered
vertices. 2

1

3

4

D - Gaggle
Proposed & prepared by Per Austrin

Transform function graph into a cycle, try to
preserve out-edges from lower-numbered
vertices. 2

1

3

4

21

3 4

For each node, add best possible outgoing edge as long as
indegrees ≤ 1 and no cycles formed (until last node)

D - Gaggle
Proposed & prepared by Per Austrin

Transform function graph into a cycle, try to
preserve out-edges from lower-numbered
vertices. 2

1

3

4

21

3 4

For each node, add best possible outgoing edge as long as
indegrees ≤ 1 and no cycles formed (until last node)

D - Gaggle
Proposed & prepared by Per Austrin

Transform function graph into a cycle, try to
preserve out-edges from lower-numbered
vertices. 2

1

3

4

21

3 4

For each node, add best possible outgoing edge as long as
indegrees ≤ 1 and no cycles formed (until last node)

D - Gaggle
Proposed & prepared by Per Austrin

Transform function graph into a cycle, try to
preserve out-edges from lower-numbered
vertices. 2

1

3

4

21

3 4

For each node, add best possible outgoing edge as long as
indegrees ≤ 1 and no cycles formed (until last node)

3 prefers pointing to 4, but 4
is taken so this is invalid

D - Gaggle
Proposed & prepared by Per Austrin

Transform function graph into a cycle, try to
preserve out-edges from lower-numbered
vertices. 2

1

3

4

21

3 4

For each node, add best possible outgoing edge as long as
indegrees ≤ 1 and no cycles formed (until last node)

next best choice would be 1, but
creates cycle so also invalid

D - Gaggle
Proposed & prepared by Per Austrin

Transform function graph into a cycle, try to
preserve out-edges from lower-numbered
vertices. 2

1

3

4

21

3 4

For each node, add best possible outgoing edge as long as
indegrees ≤ 1 and no cycles formed (until last node)

next best choice is 2, this is valid

D - Gaggle
Proposed & prepared by Per Austrin

Transform function graph into a cycle, try to
preserve out-edges from lower-numbered
vertices. 2

1

3

4

21

3 4

For each node, add best possible outgoing edge as long as
indegrees ≤ 1 and no cycles formed (until last node)

when at last step, we have built
a long path, tie it up into a cycle

D - Gaggle
Proposed & prepared by Per Austrin

Transform function graph into a cycle, try to
preserve out-edges from lower-numbered
vertices. 2

1

3

4

21

3 4

For each node, add best possible outgoing edge as long as
indegrees ≤ 1 and no cycles formed (until last node)

In general throughout the algorithm the partial
solution is a set of paths.

Keep track of which endpoints are connected to
each other to avoid creating cycles.

Can be done in O(n).

E - Pitch Performance
Proposed by Johan Sannemo & prepared by Per Austrin

Given piecewise-constant function f and piecewise-quadratic

function g, compute
∫ T

x=0
|f(x)− g(x)|dx

E - Pitch Performance
Proposed by Johan Sannemo & prepared by Per Austrin

Given piecewise-constant function f and piecewise-quadratic

function g, compute
∫ T

x=0
|f(x)− g(x)|dx

Separate the calculation into intervals so that f(x) is constant
and g(x) quadratic on each interval.

E - Pitch Performance
Proposed by Johan Sannemo & prepared by Per Austrin

Given piecewise-constant function f and piecewise-quadratic

function g, compute
∫ T

x=0
|f(x)− g(x)|dx

Separate the calculation into intervals so that f(x) is constant
and g(x) quadratic on each interval.

For each interval:
If f(x) crosses g(x) in the interval (happens at most twice),
subdivide further based on these crossing points

E - Pitch Performance
Proposed by Johan Sannemo & prepared by Per Austrin

Given piecewise-constant function f and piecewise-quadratic

function g, compute
∫ T

x=0
|f(x)− g(x)|dx

Separate the calculation into intervals so that f(x) is constant
and g(x) quadratic on each interval.

For each interval:
If f(x) crosses g(x) in the interval (happens at most twice),
subdivide further based on these crossing points

Now just need to integrate a quadratic function on each
interval, use standard formula

H - Winning the Vote
Proposed & prepared by Nils Gustafsson

We get sequence of 1s and 2s, and some positions where we
count who is in the lead

2 1 1 2 2 2 2 2

A count gives +1, 0, or −1 points. What is minimum distance
counters need to be moved so that total score is positive?

H - Winning the Vote
Proposed & prepared by Nils Gustafsson

We get sequence of 1s and 2s, and some positions where we
count who is in the lead

A count gives +1, 0, or −1 points. What is minimum distance
counters need to be moved so that total score is positive?

0 −1 0 +1 0 −1 −1 −1 −12 1 1 2 2 2 2 2

1. Compute the point value for each position.

Initial score = 0 + 0 + (−1)
Need to get 2 more points.

H - Winning the Vote
Proposed & prepared by Nils Gustafsson

We get sequence of 1s and 2s, and some positions where we
count who is in the lead

A count gives +1, 0, or −1 points. What is minimum distance
counters need to be moved so that total score is positive?

0 −1 0 +1 0 −1 −1 −1 −1

2. Compute how far each counter would have to move to get
+1 or +2 additional score

3 3 4

5∞∞
Cost to increase by 1:

Cost to increase by 2:

H - Winning the Vote
Proposed & prepared by Nils Gustafsson

We get sequence of 1s and 2s, and some positions where we
count who is in the lead

A count gives +1, 0, or −1 points. What is minimum distance
counters need to be moved so that total score is positive?

0 −1 0 +1 0 −1 −1 −1 −1

3 3 4

5∞∞
Cost to increase by 1:

Cost to increase by 2:

3. Find cheapest way of getting the needed total increase
using dynamic programming: “what is minimum cost to get
total score increase x using only the first i counters?”

Time complexity O(#counters ·#voters) = O(n2)

H - Winning the Vote
Proposed & prepared by Nils Gustafsson

We get sequence of 1s and 2s, and some positions where we
count who is in the lead

A count gives +1, 0, or −1 points. What is minimum distance
counters need to be moved so that total score is positive?

0 −1 0 +1 0 −1 −1 −1 −1

3 3 4

5∞∞
Cost to increase by 1:

Cost to increase by 2:

4. Bonus challenge: there is also a greedy strategy for the last
step, gives an O(n log n) solution

C - Friendly Fire
Proposed & prepared by Nils Gustafsson

Find path from origin avoiding some lines.
Each step movesupward but can choose straight or diagonal left/right

C - Friendly Fire
Proposed & prepared by Nils Gustafsson

Find path from origin avoiding some lines.

1. Each line gives rise to a triangle-shaped bad area
(If we go into the bad area we cannot avoid the line.)

Each step movesupward but can choose straight or diagonal left/right

C - Friendly Fire
Proposed & prepared by Nils Gustafsson

Find path from origin avoiding some lines.

2. When two triangles touch, the pocket formed is also bad.
We get a larger bad triangle.
The new triangle could touch others and this repeats.

Each step movesupward but can choose straight or diagonal left/right

C - Friendly Fire
Proposed & prepared by Nils Gustafsson

Find path from origin avoiding some lines.

2. When two triangles touch, the pocket formed is also bad.
We get a larger bad triangle.
The new triangle could touch others and this repeats.

Each step movesupward but can choose straight or diagonal left/right

C - Friendly Fire
Proposed & prepared by Nils Gustafsson

Find path from origin avoiding some lines.

Final bad region:

Given these extended triangles we can sweep upwards

Keeping a set of the currently active triangles we can
efficiently check if an x-coordinate is bad or safe.

This enables us to construct the path in O(n log n)

Each step movesupward but can choose straight or diagonal left/right

C - Friendly Fire
Proposed & prepared by Nils Gustafsson

Find path from origin avoiding some lines.

Final bad region:

Finding the extended triangles can be done by downwards
sweep in O(n log n).

Again we keep set of active triangles.

When we add new one, check if it touches an existing one, and
if so extend it.

Each step movesupward but can choose straight or diagonal left/right

B - Bling
Proposed by Johan Sannemo & prepared by Per Austrin

Find an optimal way of making money from fruits in game that
is not Animal Crossing

B - Bling
Proposed by Johan Sannemo & prepared by Per Austrin

Find an optimal way of making money from fruits in game that
is not Animal Crossing

Main difficulty in problem:

Most of the time we want to plant fruits into trees because
this yields many more fruits and things grow exponentially.

But sometimes we want to instead sell a few fruits in order to
be able to afford an exotic fruit in one of the next few days.

B - Bling
Proposed by Johan Sannemo & prepared by Per Austrin

Find an optimal way of making money from fruits in game that
is not Animal Crossing

Main difficulty in problem:

Most of the time we want to plant fruits into trees because
this yields many more fruits and things grow exponentially.

But sometimes we want to instead sell a few fruits in order to
be able to afford an exotic fruit in one of the next few days.

This makes a greedy approach likely to fail (we do not know
any greedy strategy that works)

B - Bling
Proposed by Johan Sannemo & prepared by Per Austrin

Find an optimal way of making money from fruits in game that
is not Animal Crossing

When greedy fails, we look to dynamic programming for hope.

B - Bling
Proposed by Johan Sannemo & prepared by Per Austrin

Find an optimal way of making money from fruits in game that
is not Animal Crossing

When greedy fails, we look to dynamic programming for hope.

Issue: we cannot use the entire state of the farm as our DP state because
the number of trees etc will grow exponentially and there will be too
many states.

B - Bling
Proposed by Johan Sannemo & prepared by Per Austrin

Find an optimal way of making money from fruits in game that
is not Animal Crossing

When greedy fails, we look to dynamic programming for hope.

Issue: we cannot use the entire state of the farm as our DP state because
the number of trees etc will grow exponentially and there will be too
many states.

Solution: when a parameter has become large enough, we do not care
about its exact value anymore.

B - Bling
Proposed by Johan Sannemo & prepared by Per Austrin

Find an optimal way of making money from fruits in game that
is not Animal Crossing

When greedy fails, we look to dynamic programming for hope.

Issue: we cannot use the entire state of the farm as our DP state because
the number of trees etc will grow exponentially and there will be too
many states.

Solution: when a parameter has become large enough, we do not care
about its exact value anymore.

For instance, 12 fruits are enough to buy exotic fruits in all the
next three days.

So our DP state only needs to keep 13 possible values for how many
fruits we have (we have 0, 1, . . ., or 11 fruits, or we have ≥ 12 fruits)

B - Bling
Proposed by Johan Sannemo & prepared by Per Austrin

Find an optimal way of making money from fruits in game that
is not Animal Crossing

Carefully thinking the DP state through for each parameter
one ends up with fewer than 106 states

B - Bling
Proposed by Johan Sannemo & prepared by Per Austrin

Find an optimal way of making money from fruits in game that
is not Animal Crossing

Carefully thinking the DP state through for each parameter
one ends up with fewer than 106 states

For each state there are only a small constant number of
options (at most 20ish)

B - Bling
Proposed by Johan Sannemo & prepared by Per Austrin

Find an optimal way of making money from fruits in game that
is not Animal Crossing

Carefully thinking the DP state through for each parameter
one ends up with fewer than 106 states

For each state there are only a small constant number of
options (at most 20ish)

(Large span of possible amounts of pruning and optimization
that can be done on state.)

Leads to a fast algorithm.

