KTH Challenge 2016 Solutions

June 16, 2017

Jury

- Per Austrin (KTH)
- Jan Elffers (KTH)
- Lukáš Poláček (Google)
- Johan Sannemo (KTH)
- Marc Vinyals (KTH)

B - Another Brick in the Wall

Problem

Find if first h sequences of numbers with sum $\geq w$ have sum $=w$

Solution

While not done:

- If sum < w: add next brick
- If sum $=w$: begin new row
- If sum > w : impossible
≥ 31 submissions, ≥ 27 correct, first at 0:05:01.

C - Zoning

Problem

Find 1 square furthest from all 3 squares

Solution

- BFS starting from each 1 square? Too slow!
- BFS starting from every 3 square.
- Add all 3 squares to the queue at the same time.
- Answer is last 1 square that we visit.
≥ 51 submissions, ≥ 14 correct, first at $0: 16: 54$.

F - Hay Bales

Problem

Find the minimum number of moves to sort the sequence

Solution

Repeat the following until sorted:

- Try to undo 2 inversions at a time (sort PCC or PPC).
- Otherwise sort any substring not yet sorted.
≥ 41 submissions, ≥ 10 correct, first at 0:37:16.

D - Dice Betting

Problem

Calculate the probability that at least k distinct values appear when s-sided die is thrown n times.

Solution

- Suppose we saw 5 distinct value on a 12 -sided die. In the next throw, 7 outcomes are unseen and 5 already seen.
- Unseen value appears with probability $1-\ell / s$ after seeing ℓ distinct values.
- Dynamic programming:
- $p_{i j}$: probability we saw j values after i throws.
- Update $p_{i+1, j}$ and $p_{i+1, j+1}$ using the above rule.
≥ 21 submissions, ≥ 5 correct, first at 0:36:52.

G - Racetrack

Problem

Simulate the race and print the finish times

Solution

- Only do work when someone passes the finish.
- Maintain a queue of trains of drivers.

$$
t=0
$$

≥ 9 submissions, ≥ 3 correct, first at 0:56:11.

G - Racetrack

Problem

Simulate the race and print the finish times

Solution

- Only do work when someone passes the finish.
- Maintain a queue of trains of drivers.

≥ 9 submissions, ≥ 3 correct, first at $0: 56: 11$.

G - Racetrack

Problem

Simulate the race and print the finish times

Solution

- Only do work when someone passes the finish.
- Maintain a queue of trains of drivers.

$$
t=322 \quad t=256 \quad t=223 \quad t=201 \quad t=191 \quad t=167
$$

≥ 9 submissions, ≥ 3 correct, first at 0:56:11.

G - Racetrack

Problem

Simulate the race and print the finish times

Solution

- Only do work when someone passes the finish.
- Maintain a queue of trains of drivers.

$$
t=334 \quad t=322 \quad t=256 \quad t=223 \quad t=201 \quad t=191
$$

≥ 9 submissions, ≥ 3 correct, first at 0:56:11.

G - Racetrack

Problem

Simulate the race and print the finish times

Solution

- Only do work when someone passes the finish.
- Maintain a queue of trains of drivers.

$$
t=382 \quad t=334 \quad t=322 \quad t=256 \quad t=223 \quad t=201
$$

≥ 9 submissions, ≥ 3 correct, first at 0:56:11.

G - Racetrack

Problem

Simulate the race and print the finish times

Solution

- Only do work when someone passes the finish.
- Maintain a queue of trains of drivers.

≥ 9 submissions, ≥ 3 correct, first at 0:56:11.

G - Racetrack

Problem

Simulate the race and print the finish times

Solution

- Only do work when someone passes the finish.
- Maintain a queue of trains of drivers.

G - Racetrack

Problem

Simulate the race and print the finish times

Solution

- Only do work when someone passes the finish.
- Maintain a queue of trains of drivers.

≥ 9 submissions, ≥ 3 correct, first at $0: 56: 11$.

G - Racetrack

Problem

Simulate the race and print the finish times

Solution

- Only do work when someone passes the finish.
- Maintain a queue of trains of drivers.

≥ 9 submissions, ≥ 3 correct, first at 0:56:11.

G - Racetrack

Problem

Simulate the race and print the finish times

Solution

- Only do work when someone passes the finish.
- Maintain a queue of trains of drivers.

≥ 9 submissions, ≥ 3 correct, first at $0: 56: 11$.

G - Racetrack

Problem

Simulate the race and print the finish times

Solution

- Only do work when someone passes the finish.
- Maintain a queue of trains of drivers.

≥ 9 submissions, ≥ 3 correct, first at 0:56:11.

G - Racetrack

Problem

Simulate the race and print the finish times

Solution

- Only do work when someone passes the finish.
- Maintain a queue of trains of drivers.

≥ 9 submissions, ≥ 3 correct, first at 0:56:11.

G - Racetrack

Problem

Simulate the race and print the finish times

Solution

- Only do work when someone passes the finish.
- Maintain a queue of trains of drivers.

≥ 9 submissions, ≥ 3 correct, first at 0:56:11.

G - Racetrack

Problem

Simulate the race and print the finish times

Solution

- Only do work when someone passes the finish.
- Maintain a queue of trains of drivers.

≥ 9 submissions, ≥ 3 correct, first at $0: 56: 11$.

G - Racetrack

Problem

Simulate the race and print the finish times

Solution

- Only do work when someone passes the finish.
- Maintain a queue of trains of drivers.

$$
t=768 \quad t=679 \quad t=673 \quad t=669 \quad t=603
$$

≥ 9 submissions, ≥ 3 correct, first at 0:56:11.

G - Racetrack

Problem

Simulate the race and print the finish times

Solution

- Only do work when someone passes the finish.
- Maintain a queue of trains of drivers.

≥ 9 submissions, ≥ 3 correct, first at 0:56:11.

G - Racetrack

Problem

Simulate the race and print the finish times

Solution

- Only do work when someone passes the finish.
- Maintain a queue of trains of drivers.

≥ 9 submissions, ≥ 3 correct, first at 0:56:11.

G - Racetrack

Problem

Simulate the race and print the finish times

Solution

- Only do work when someone passes the finish.
- Maintain a queue of trains of drivers.

≥ 9 submissions, ≥ 3 correct, first at 0:56:11.

G - Racetrack

Problem

Simulate the race and print the finish times

Solution

- Only do work when someone passes the finish.
- Maintain a queue of trains of drivers.

≥ 9 submissions, ≥ 3 correct, first at 0:56:11.

G - Racetrack

Problem

Simulate the race and print the finish times

Solution

- Only do work when someone passes the finish.
- Maintain a queue of trains of drivers.

≥ 9 submissions, ≥ 3 correct, first at $0: 56: 11$.

G - Racetrack

Problem

Simulate the race and print the finish times

Solution

- Only do work when someone passes the finish.
- Maintain a queue of trains of drivers.

≥ 9 submissions, ≥ 3 correct, first at 0:56:11.

G - Racetrack

Problem

Simulate the race and print the finish times

Solution

- Only do work when someone passes the finish.
- Maintain a queue of trains of drivers.

≥ 9 submissions, ≥ 3 correct, first at 0:56:11.

G - Racetrack

Problem

Simulate the race and print the finish times

Solution

- Only do work when someone passes the finish.
- Maintain a queue of trains of drivers.

≥ 9 submissions, ≥ 3 correct, first at 0:56:11.

G - Racetrack

Problem

Simulate the race and print the finish times

Solution

- Only do work when someone passes the finish.
- Maintain a queue of trains of drivers.

≥ 9 submissions, ≥ 3 correct, first at 0:56:11.

G - Racetrack

Problem

Simulate the race and print the finish times

Solution

- Only do work when someone passes the finish.
- Maintain a queue of trains of drivers.

≥ 9 submissions, ≥ 3 correct, first at 0:56:11.

G - Racetrack

Problem

Simulate the race and print the finish times

Solution

- Only do work when someone passes the finish.
- Maintain a queue of trains of drivers.

≥ 9 submissions, ≥ 3 correct, first at $0: 56: 11$.

G - Racetrack

Problem

Simulate the race and print the finish times

Solution

- Only do work when someone passes the finish.
- Maintain a queue of trains of drivers.

≥ 9 submissions, ≥ 3 correct, first at $0: 56: 11$.

G - Racetrack

Problem

Simulate the race and print the finish times

Solution

- Only do work when someone passes the finish.
- Maintain a queue of trains of drivers.

≥ 9 submissions, ≥ 3 correct, first at $0: 56: 11$.

G - Racetrack

Problem

Simulate the race and print the finish times

Solution

- Only do work when someone passes the finish.
- Maintain a queue of trains of drivers.

≥ 9 submissions, ≥ 3 correct, first at $0: 56: 11$.

G - Racetrack

Problem

Simulate the race and print the finish times

Solution

- Only do work when someone passes the finish.
- Maintain a queue of trains of drivers.

≥ 9 submissions, ≥ 3 correct, first at 0:56:11.

G - Racetrack

Problem

Simulate the race and print the finish times

Solution

- Only do work when someone passes the finish.
- Maintain a queue of trains of drivers.

≥ 9 submissions, ≥ 3 correct, first at 0:56:11.

G - Racetrack

Problem

Simulate the race and print the finish times

Solution

- Only do work when someone passes the finish.
- Maintain a queue of trains of drivers.

≥ 9 submissions, ≥ 3 correct, first at 0:56:11.

G - Racetrack

Problem

Simulate the race and print the finish times

Solution

- Only do work when someone passes the finish.
- Maintain a queue of trains of drivers.

$$
t=1627 \quad t=1561 \quad t=1536 \quad t=1447 \quad t=1441
$$

≥ 9 submissions, ≥ 3 correct, first at 0:56:11.

G - Racetrack

Problem

Simulate the race and print the finish times

Solution

- Only do work when someone passes the finish.
- Maintain a queue of trains of drivers.

≥ 9 submissions, ≥ 3 correct, first at $0: 56: 11$.

G - Racetrack

Problem

Simulate the race and print the finish times

Solution

- Only do work when someone passes the finish.
- Maintain a queue of trains of drivers.

≥ 9 submissions, ≥ 3 correct, first at 0:56:11.

G - Racetrack

Problem

Simulate the race and print the finish times

Solution

- Only do work when someone passes the finish.
- Maintain a queue of trains of drivers.

≥ 9 submissions, ≥ 3 correct, first at $0: 56: 11$.

G - Racetrack

Problem

Simulate the race and print the finish times

Solution

- Only do work when someone passes the finish.
- Maintain a queue of trains of drivers.

≥ 9 submissions, ≥ 3 correct, first at $0: 56: 11$.

G - Racetrack

Problem

Simulate the race and print the finish times

Solution

- Only do work when someone passes the finish.
- Maintain a queue of trains of drivers.

≥ 9 submissions, ≥ 3 correct, first at $0: 56: 11$.

G - Racetrack

Problem

Simulate the race and print the finish times

Solution

- Only do work when someone passes the finish.
- Maintain a queue of trains of drivers.

≥ 9 submissions, ≥ 3 correct, first at 0:56:11.

G - Racetrack

Problem

Simulate the race and print the finish times

Solution

- Only do work when someone passes the finish.
- Maintain a queue of trains of drivers.

≥ 9 submissions, ≥ 3 correct, first at 0:56:11.

G - Racetrack

Problem

Simulate the race and print the finish times

Solution

- Only do work when someone passes the finish.
- Maintain a queue of trains of drivers.

≥ 9 submissions, ≥ 3 correct, first at $0: 56: 11$.

G - Racetrack

Problem

Simulate the race and print the finish times

Solution

- Only do work when someone passes the finish.
- Maintain a queue of trains of drivers.

≥ 9 submissions, ≥ 3 correct, first at $0: 56: 11$.

G - Racetrack

Problem

Simulate the race and print the finish times

Solution

- Only do work when someone passes the finish.
- Maintain a queue of trains of drivers.

≥ 9 submissions, ≥ 3 correct, first at 0:56:11.

G - Racetrack

Problem

Simulate the race and print the finish times

Solution

- Only do work when someone passes the finish.
- Maintain a queue of trains of drivers.

≥ 9 submissions, ≥ 3 correct, first at 0:56:11.

G - Racetrack

Problem

Simulate the race and print the finish times

Solution

- Only do work when someone passes the finish.
- Maintain a queue of trains of drivers.

≥ 9 submissions, ≥ 3 correct, first at 0:56:11.

G - Racetrack

Problem

Simulate the race and print the finish times

Solution

- Only do work when someone passes the finish.
- Maintain a queue of trains of drivers.

≥ 9 submissions, ≥ 3 correct, first at 0:56:11.

A - Ironman

Problem

Find shortest path across layers with different speeds

Insight

Light always takes the shortest fastest path

Solution

- Assume initial angle known
- Snell's refraction law: $\sin \theta_{1} / v_{1}=\sin \theta_{2} / v_{2}$
- Binary search
≥ 6 submissions, ≥ 6 correct, first at 1:06:53.

H - nnnnn

Problem

Given number $L=N \cdot D \leq 10^{10^{6}}$ with $D=\left\lceil\log _{10}(N+1)\right\rceil$, find N

Insight

For a given N,
length $($ input $) \approx \log (N D)=\log (N)+\log (D) \approx D+\log (D)$ $\log (D)$ is very small, so $D \approx$ length(input)

Solution

- Try all values of D from length(input) to length(input) - 7
- Check if $D \cdot 10^{D-1} \leq L<(D+1) \cdot 10^{D}$
- If so, this is the correct D
- Denominator is small, so division is O (length)
≥ 17 submissions, ≥ 2 correct, first at 1:32:34.

E - Climbing

Problem

Find sequence of safe peg placements

Solution

- There is a safe sequence on a path with $\log n$ pegs
- Lay unsafe sequence on a line
- Simulate safe sequence: $s_{i}=\bigcup u_{j}$ if line e_{j} has peg at time i
- Max \#pegs $\left|\bigcup_{j \in J} u_{j}\right| \leq|J| \max \left|u_{j}\right| \leq \log n \cdot u \leq 10 u$
≥ 0 submissions, ≥ 0 correct.

This was fun! When is the next contest?

- We train every two weeks at KTH, check www.csc.kth.se/contest
- Next training in September
- Nordic Championships in October, North-western Europe qualifier in November
- Plenty of other online competitions every week
- Subscribe to our calendar

Guide To Programming Contests

- http://contest-wiki.csc.kth.se/
- Written by Lukáš.
- The first training program for programming contests.
- Well received in the contest community.

