KTH Challenge 2015 Solutions

April 26, 2015

Jury

- Erik Aas (Paris 7)
- Oskar Werkelin Ahlin (Spotify)
- Per Austrin (KTH)
- Jan Elffers (KTH)
- Simon Klein (KTH)
- Ulf Lundström (Stanford)
- Lukáš Poláček (Spotify/KTH), head of jury
- Marc Vinyals (KTH)

B - Black Friday

Problem

Determine the winner of a dice rolling game where
 the highest unique outcome wins.

Solution

- Divide players into buckets based on their outcomes.
- Find the highest outcome with bucket size 1 (if any).
- Output the player number.

47 submissions, 38 correct, first at 0:03:23.

G - A1 Paper

Problem

- Keep track of how many sheets of the current size that must be created.
- This is twice the number needed at previous size minus the number of sheets we have of this size.
- Add the length of tape needed for this to a running total.

71 submissions, 28 correct, first at 1:25:43.

C - Absurdistan Roads III

Problem

Orient n edges among n vertices, so that each vertex has one outgoing edge.

Solution

- Orient all leaves towards their neighbors and remove them from the graph.
- Repeat until no leaves are left.
- The rest is just cycles, orient them arbitrarily.
- Can be implemented in linear time.

83 submissions, 17 correct, first at 0:23:08.

F - Spock

Problem

Predict the moves made by a simple pseudo random number generator.

Solution

- Keep a list of all $p^{3} \approx 2 \mathrm{M}$ possible states of the RNG
- When making a move:
pick a possible state at random and output a move which beats the move predicted by that state.
- When getting a move from the computer: filter out all states that did not predict that move.
- (Optimization: by making a few arbitrary moves in the beginning, can get much shorter list of initial possible states.)

21 submissions, 6 correct, first at 2:14:22.

H - Odd Binomial Coefficients

Problem

Count the number of odd binomial coefficients in the first n rows of Pascal's triangle.

Solution

- Print the first n rows of Pascal's triangle modulo 2. Sierpinski triangle:

- Each proper triangle contains 3^{k} one's, where k is the number of recursion levels.

Solution (continued)

- The first 2^{ℓ} rows are occupied by a level ℓ triangle, where ℓ is the highest bit in n. Recurse on the bottom $n-2^{\ell}$ rows.

27 submissions, 12 correct, first at 0:16:51.

A - Proteins

Problem

Find the minimum number of insertions needed into a string to make N of its 3-letter blocks being "ATG".

Solution

- Keep track of the number of ATG blocks that can be obtained from the last i letters of the original string if inserting j letters.
- A recursive formula can be found.
- Use the fact that substrings "AT", "AG", and "TG" can be turned into "ATG" with one insertion and that "A", " T ", and " G " requires two insertions.
- Implement with dynamic programming.

17 submissions, ?? correct, first at 0:23:33.

E - Shibuya Crossing

Problem

Find the size of the maximum clique in a special graph.

Solution

- The input graph is called permutation graph.
- Consider the permutation represented by this graph in one-line notation.
- The largest clique is equal to the longest decreasing subsequence of this sequence.
- This can be solved efficiently in $O(n \log n)$, though slower solutions would also pass.

15 submissions, ?? correct, first at 1:37:40.

D - Xortris

Problem

Decide if a pattern of black squares is a composition of tetrominoes.

Insight

3×2 or larger boards with even number of black squares are always solvable. Proof: You can place a 2×1 piece anywhere with an S and a T . This means you can move one black square one step in any direction until it cancels out with another black square.

Solution

- $1 \times n$: add 1×4 pieces greedily.
- 2×2 : check if 2×2 fits.
- otherwise: Check if there is an even number of black squares.

18 submissions, 7 correct, first at 1:20:44.

I - The Addition Game

Problem

Given a, find permutations π and σ such that $a=\pi+\sigma$.

Heuristic solution

- Necessary condition: $a_{1}+\cdots+a_{n} \equiv 0(\bmod n)$. If this is satisfied, a pair of permutations exist.
- Better formulation: Find a permutation π such that $a-\pi$ is a permutation.
- Heuristic: If $a-\pi$ is not a permutation, some values $k \in\{1, \ldots, n\}$ occur more than once and some values / do not occur in $a-\pi$.
- Make a swap in π to change a k into an $/$ in $a-\pi$. This decreases or keeps constant the number of k 's.

Deterministic solution

- Solving the case when $a-\pi$ lacks only two values suffices to solve the whole problem, by changing a step by step from $a=\mathbf{0}$ (for which $\pi_{i}=i, \sigma_{i}=-i$ work).
- So $a-\pi$ is missing m_{1} and m_{2} in positions i_{1} and i_{2}. Find a j such that $a-\pi\left(i_{1} \quad j\right)$ has value m_{1} at position i_{1} (we had another possibility, i_{2}, but we chose i_{1}).
- Now $a-\pi$ is missing $a_{j}-\pi_{j}$ and m_{2} in positions j and i_{2}, and only one possibility (swapping to make $a-\pi$ take value m_{2} at i_{2}) gives us something new.
- Process cannot continue forever, so eventually the missing values are obtained by simply swapping the new i_{1} and i_{2}.
- Published solution in Marshall Hall Jr. "A Combinatorial Problem on Abelian Groups".

10 submissions, ?? correct, first at ????:??.

This was fun! When is the next contest?

- We train every two weeks at KTH, check www.csc.kth.se/contest.
- Next training on Wednesday April 29 at 17:15 in Röd.
- Nordic Championships in October, North-western Europe qualifier in November.
- Plenty of other online competitions every week.
- Subscribe to our calendar and RSS feed.

Boot camp May 8 - May 10

- 3 days on Möja in the archipelago.
- Lectures, trainings and fun activities.
- By invitation only.

Photo by The U.S. Army

- Also camp for Swedish IOI team.

