KTH Challenge 2013

April 21, 2013

Jury

Solutions
Further
Information

■ Lukáš Poláček (KTH, Spotify), head of jury

- Per Austrin (KTH)

■ Oskar Werkelin Ahlin (Spotify)

- Ulf Lundström (KTH)

■ Marc Vinyals (KTH)

- Erik Aas (KTH)

■ Emma Enström (KTH)

- Andreas Lundblad (KTH)

B - Peragrams

Solutions
Further
Information

- Only one letter can have odd number of occurrences in a palindrome.
- We need to remove

\mathbf{S}	\mathbf{A}	\mathbf{T}	\mathbf{O}	\mathbf{R}
\mathbf{A}	\mathbf{R}	\mathbf{E}	\mathbf{P}	\mathbf{O}
\mathbf{T}	\mathbf{E}	\mathbf{N}	\mathbf{E}	\mathbf{T}
\mathbf{O}	\mathbf{P}	\mathbf{E}	\mathbf{R}	\mathbf{A}
\mathbf{R}	\mathbf{O}	\mathbf{T}	\mathbf{A}	\mathbf{S}
Photo by		Ross	Beresford	

$o-1$ letters, where o is the number of
Photo by Ross Beresford letters with odd number of occurrences.

- Don't print -1 !

Problem author: Oskar Werkelin Ahlin
Statistics: 89 submissions, 51 correct, first at 0:04:10.

F - Bank Queue

- Create T time slots for T minutes.
- Put each person into their time slot.
- Process times slots

from $T-1$ to 0 and add all the people to the set of candidates.
■ At each time slot pick the person with the most money which hasn't been picked yet.
- Need fast data structure to get $O(N \log N)$ time.

Problem author: Lukáś Poláček
Statistics: 93 submissions, 33 correct, first at 0:09:07.

A - Car Game

WNF ${ }^{2} 766$

- Keep track of the first word for each possible licence plate (there are only 17576 of them).
■ For each word, list all license plates that fit.
- Go through the word keeping a list of letters you have seen.
- Use this to also keep a list of ordered pairs of letters.
- Each such pair combined with a new letter gives a possible license plate.

Problem author: Ulf Lundström
Statistics: 135 submissions, 29 correct, first at 0:26:34.

I - Flag Quiz

- Calculate $d(i, j)$, the distance between answer i and j.
■ For each answer calculate the incongruousity - the maximum distance to other answers.
- Print all answers
with the smallest maximum distance (incongruousity).

Problem authors: Ulf Lundström and Emma Enström Statistics: 57 submissions, 23 correct, first at 1:10:43.

C - Vacuum Tubes

■ Sort tubes: $I_{1} \leq \cdots \leq I_{L}$.

- For each tube
i, find an index p_{i} such that $I_{i}+I_{p_{i}} \leq L_{1}$ and p_{i} is as large as possible.
- Find similar index q_{i} for L_{2}.

- Try all $i, j \in\{1, \ldots, N\}$.
- Try pairing i with
$p_{i}, p_{i}-1, p_{i}-2, p_{i}-3$ and j with $q_{i}, q_{i}-1, q_{i}-2, q_{i}-3$.
Make sure we don't use a tube twice.
- Also possible in $O(N \log N)$.

Problem author: Ulf Lundström
Statistics: 47 submissions, 13 correct, first at 0:37:14.

D - Chicken Joggers

- Traverse the tree by depth-first-search, keep track of the distance from the root.
■ If we can't visit any

more intersections after visiting intersection u (leaf), we can decide if we need to put a lamp here.
- If u is not a leaf, we can decide whether we need a lamp by looking at already processed sons and edges going away from the root.
Problem author: Oskar Werkelin Ahlin
Statistics: 39 submissions, 7 correct, first at 0:44:26.

H - Free Cell

- We can move
twice as many cards using $M+1$ empty stacks than using only M.

- We can move $N+1$ cards using 0 empty stacks and N free cells.
- Hence we can move at most $(N+1) \cdot 2^{M}$ cards.
- Slower solutions also worked.

Problem author: Andreas Lundblad Statistics: 18 submissions, ?? correct, first at 1:42:57.

Forest (1/2)

KTH Challenge 2013

Solutions
Further
Information

Trapezoid method:

Forest (1/2)

KTH Challenge 2013

Solutions

Further
Information

Trapezoid method:

Forest (1/2)

Solutions

Further

Information

Trapezoid method:

Forest (1/2)

Solutions

Further
Information
Trapezoid method:

Forest (1/2)

Trapezoid method:

Forest (1/2)

Trapezoid method:

Forest (1/2)

KTH Challenge 2013

Solutions

Further

Information

Trapezoid method:

Forest (1/2)

KTH Challenge 2013

Solutions

Further
Information

Trapezoid method:

Forest (1/2)

KTH Challenge 2013

Trapezoid method:

Solutions
Further
Information

Forest (1/2)

KTH Challenge 2013

Solutions
Further
Information

Trapezoid method:

Forest (1/2)

KTH Challenge 2013

Solutions
Further
Information

Trapezoid method:

Forest (1/2)

KTH Challenge 2013

Solutions
Further
Information

Trapezoid method:

Forest (1/2)

KTH Challenge 2013

Solutions
Further
Information

Trapezoid method:

Forest (1/2)

KTH Challenge 2013

Solutions
Further
Information

Trapezoid method:

Forest (1/2)

KTH Challenge 2013

Solutions
Further
Information

Trapezoid method:

Forest (1/2)

KTH Challenge 2013

Solutions
Further
Information

Trapezoid method:

Forest (2/2)

- Rotation is easy using complex numbers.

Problem author: Lukás Poláček Statistics: 5 submissions, ?? correct, first at ??.

E - Hogwarts (1/2)

■ Use
black color for an existing edge, white color for missing edge.

- It's possible to rotate colors on a

Photo by erinjudge cycle u, v, w or a path of length $3 u, v, w, x$.

- Process edges in lexicographic order $(0,1), \ldots,(0, N-$ 1), $(1,2), \ldots,(N-2, N-1)$:
- Try to fix color of (i, j) by rotating a cycle i, j, k, such that $i<j<k$.
- Otherwise try a path i, j, k, l, such that $i<k<l$.
- We never change an edge that was already processed.

E - Hogwarts (2/2)

- In the end we might not be able to fix the last node repeat the same process backwards.
- If this didn't succeed, randomly change labels from i to $(i+c) \bmod N$ and try again.
■ This works for big graphs, for small graphs use brute force.
Problem author: Erik Aas
Statistics: 17 submissions, ?? correct, first at ??.

This was fun! When is the next contest?

■ We train every two weeks at KTH, check www.csc.kth.se/contest.
■ Next training on Wednesday at 17:15 in Orange.
■ Nordic Championships in October, North-western Europe qualifier in November.
■ Plenty of other online competitions every week.
■ Subscribe to our calendar and RSS feed.

Boot camp June 7 - June 9

KTH
Challenge
2013

Solutions
Further Information

- 3 days on Möja in the archipelago.
- Lectures, trainings and fun activities.

Photo by The U.S. Army
■ By invitation only.

- Also camp for Swedish IOI team and Linköping University.

Guide To Programming Contests

Solutions
Further Information

■ http://contest-wiki.csc.kth.se/
■ Written by Lukáš.
■ Chapters "How to get better?" and "Team strategy" almost complete. More to come.
■ The first training program for programming contests.
■ Well received in the contest community.

