KTH Challenge 2011 Solutions

Head of Jury: Lukáš Poláček
Jury: Per Austrin, Emma Enström, Mikael Goldmann, Ulf Lundström

April 9, 2011

A - Reversed Binary Numbers

- Just implement what the problem statement says.
- Can be made easier with bitset<32> in C++ or Integer.toBinaryString() in Java.

Statistics: 66 submissions, 39 correct, first at 00:03:29.

E - Coast Length

- Surround the map from the input by empty squares. Flood it from one of the corners using a breadth-first-search.

- Time is linear in the size of the map.
- Watch out for stack size when implementing recursive Depth first search.

Statistics: 126 submissions, 17 correct, first at 0:49:43.

C - Base-2 Palindromes

- The first 5 numbers are $1,3,5,7,9$. Let's try with $11,13,15, \ldots$

C - Base-2 Palindromes

- The first 5 numbers are $1,3,5,7,9$. Let's try with $11,13,15, \ldots$ Wrong Answer

C - Base-2 Palindromes

- The first 5 numbers are $1,3,5,7,9$. Let's try with $11,13,15, \ldots$ Wrong Answer
- First find the bit length of the result. There are 2^{k} palindromes of length $2 k+1$ and $2 k+2$.
- Now we have the length L and M - the order of the palindrome among length- L palindromes. The left half of the palindrome is M in binary using L bits. Right half is a mirror of the left half.

C - Base-2 Palindromes

- The first 5 numbers are $1,3,5,7,9$. Let's try with $11,13,15, \ldots$ Wrong Answer
- First find the bit length of the result. There are 2^{k} palindromes of length $2 k+1$ and $2 k+2$.
- Now we have the length L and M - the order of the palindrome among length- L palindromes. The left half of the palindrome is M in binary using L bits. Right half is a mirror of the left half.
- Accepted

Statistics: 63 submissions, 14 correct, first at 0:20:52.

D - Kindergarten Excursion

- If a 1 is to the left of a 0 , these two have to be swapped at some point. The same is true for $2 / 0$ and $2 / 1$.
- Process the sequence from left to right. Keep track of the number of 1 's and 2's to the left of current number and calculate the result.
- Watch out for overflow.
- Linear time solution.

Statistics: 60 submissions, 12 correct, first at 1:13:57.

G - Getting Rid of Coins

- Suppose the price is 100 and we have 501 -cent coins? Would it make sense to use only 25 of them?

G - Getting Rid of Coins

- Suppose the price is 100 and we have 501 -cent coins? Would it make sense to use only 25 of them?
- No. Since we will use at least one 5-, 10- or 25 -cent coin, we would be better off paying with 1-cent coins instead of one big coin.

G - Getting Rid of Coins

- Suppose the price is 100 and we have 501 -cent coins? Would it make sense to use only 25 of them?
- No. Since we will use at least one 5-, 10- or 25 -cent coin, we would be better off paying with 1-cent coins instead of one big coin.
- We can generalize this argument for 5- and 10-cent coin.
- We try to pay using at least $N_{1}-241$-cent coins; at least $N_{5}-45$-cent coins, $N_{10}-410$-cent coins and try to pay the rest with 25 -cent coins.
- The total number of possibilities: $25 \cdot 5 \cdot 5=625$.
- Other solutions: dynamic programming and a greedy which tries only 2 possibilities.

Statistics: 38 submissions, ?? correct, first at 0:51:06.

- We can assume that s_{1} is in the first row. Rearranging columns doesn't change the result, so we can assume that the first row is sorted.
- Sorting items in the second row will not increase the area.
- Optimal solution will be always of the following form, for some k.

s_{1}	\ldots	s_{k}	$s_{2 k+1}$	\ldots	$s_{2 N-1}$
s_{k+1}	\ldots	$s_{2 k}$	$s_{2 k+2}$	\ldots	$s_{2 N}$

- With some precomputation we can try each k in constant time.

Statistics: 16 submission, ?? correct, first at 2:54:54.

B - Paintball

(a) Input graph

(b) A solution

- Instead of considering oriented edges, split each vertex into a green and blue vertex. Find a matching in the bipartite graph.

Statistics: 16 submissions, ?? correct, first at ??.

- Programmeringstävlingsverksamhet trains every two weeks at KTH, check www.csc.kth.se/contest.
- Google Code Jam and TopCoder Open start in May. Both have usually around 10000 participants.
- Nordic Championships in October, Nort-western Europe qualifier in November.
- You will find more info at our webpage www.csc.kth.se/contest. Subscribe to our calendar and RSS feed.

