${ }_{\mathrm{G}}^{\boldsymbol{B} \boldsymbol{X} \mathbb{X}}$
 OPE

Bergen Open 2021
 Solution slides

November 6, 2021
© Kattis

The jury

$>$ Petter Daae
$>$ Simen Hornnes
> Brigt Arve Toppe Håvardstun
$>$ Torstein Strømme
$>$ Kristoffer Æsøy

Special thanks:
$>$ Greg Hamerly (Kattis)
> Olav Røthe Bakken

Junior price robot

$>$ Input:
$>$ Question:

A list of numbers

What is the distance between the first element and the next element which is less than or equal to the first element?
$>$ Algorithm:

- Let a $0, a 1, \ldots, a(n-1)$ denote the numbers in the list
- for i in $1,2, \ldots, \mathrm{n}-1$:
- if ai <= a0: return i
- else return "infinity"
$>$ Runtime: $O(n)$

Archipelago

$>$ Problem summary: sort the islands by their "airport utility."

- Airport utility is defined as how many islands one can reach by travelling at most d kilometers before refuelling
$>$ Observation: all islands that can reach each other have the same utility
$>$ Algorithm A:
- Make a graph: compare all islands, make an edge between them if they are within reach of each other
- Do dfs or bfs to explore the graph. Count how many vertices are discovered for each root
- Set utility of the discovered vertices found before moving on to the next root
- Sort the islands by their utility
$>$ Runtime: $O\left(n^{2}\right)$

Archipelago

$>$ Problem summary: sort the islands by their "airport utility."

- Airport utility is defined as how many islands one can reach by travelling at most d kilometers before refuelling
$>$ Observation: all islands that can reach each other have the same utility
$>$ Algorithm B:
- Use union-find. Store size of each component (like a size-balanced union-find would do).
- For each pair of islands: call union on them if their distance is less than or equal to d
- Utility of an island is the size of its component
- Sort the islands by their utility
$>$ Runtime: $O\left(n^{2}\right) \quad$ (almost regardless of which union-find structure is used)

Coins

$>$ Problem summary: Pick 1, 2 or 3 coins from the pile; avoid to pick the last coin.
$>$ Clearly, you're in a losing position if there's only 1 coin left
$>$ Clearly, you're in a winning position if there's 2,3 or 4 coins left - respectively pick 1,2 or 3 coins such that your opponent go to the losing position
$>$ If there's 5 coins left, your opponent ends up in a winning position no matter what you do - hence, you're in a losing position
$>$ If there's 6,7 or 8 coins left, you're in a winning position - respectively pick 1,2 or 3 coins to leave your opponent with 5 coins left.
$>$...and so forth.

Coins

$>$ Problem summary: Pick 1, 2 or 3 coins from the pile; avoid to pick the last coin.
$>$ Observation: you're in a losing position if there are $4 \mathrm{k}+1$ coins left
$>$ Strategy: pick the number of coins such that your opponent will have $4 \mathrm{k}+1$ coins left.

- If there are 4 k coins left (i.e. number of coins $\% 4$ is 0), pick 3
- If there are $4 \mathrm{k}+3$ coins left (i.e. number of coins $\% 4$ is 3), pick 2
- If there are $4 \mathrm{k}+2$ coins left (i.e. number of coins $\% 4$ is 2), pick 1
$>$ TLE should not be an issue (unless you recursively try every possible game or something)

Glitching screen

$>$ Problem summary: Can you uniquely identify which picture it is, even when some pixels are incorrectly set to 0 ?
$>$ Algorithm: just do it

- For each picture:
- for each row:
- for each column:
- if there is an active pixel on the screen, but not in the picture, then it can't be this picture
- Output 'yes' if the number of qualified pictures is 1
$>$ Runtime: $O(n)$

Irritating accountants

$>$ Problem summary: Sort items according to order of categories the account operates with.
$>$ Algorithm:

- Use a dictionary/hashmap/treemap to map categories to their sorting index
- Use a dictionary/hashmap/treemap to map items to their category
- Use a list of lists: append each bought item to the list at their category's index
- Print the items in the lists in correct order
$>$ Runtime: $O(n+m)$

King of Cans

$>$ Input: The number of bottles worth 2 and 3 kroners, respectively
$>$ Question: How many piles of bottles worth exactly 100 kroners can we create?
$>$ Observation: You must always use an even number of 3's in every pile

- You can divide the number of 3's by two (round down) and think of them as 6's instead
$>$ Observation: 2's are strictly more flexible than 6's
- Everything you can do with 6's you can also do with the same worth of 2's
$>$ Conclusion: Greedily use as many 6's as possible in each pile.
- Using 16 of them yields 96 kroners - then use two 2's to get up to 100

King of Cans

$>$ Input: \quad The number of bottles worth 2 and 3 kroners, respectively
$>$ Question: How many piles of bottles worth exactly 100 kroners can we create?
$>$ Greedily use as many 6's as possible in each pile
o repeat:

- pick 6 's: $\min (16$, number of remaining 6 's)
- pick 2's: as many as necessary to make 100
- if there were not enough resources, break. Otherwise, increase counter.
$>$ Runtime: $O(a+b)$

King of Cans

$>$ Input: \quad The number of bottles worth 2 and 3 kroners, respectively
$>$ Question: How many piles of bottles worth exactly 100 kroners can we create?
$>$ Observation: the only way bottles go to waste, is if there are not enough 2's

- need at least two 2's for each pile
- $\operatorname{print}\left(\min \left(\left(6^{*}\right.\right.\right.$ sixes $+2^{*}$ twos $) / 100$, twos $\left.\left./ 2\right)\right)$
$>$ Runtime: $O(1)$

Doomsday

$>$ Problem summary: Walk from base and fetch water and food before returning to base.
$>$ Algorithm:

- Run Dijkstra from base at location 0 .
- Add two new vertices to the graph:
- connect the water depots to the first new vertex. Use the distance found in step 1 as weights.
- connect the food depots to the second new vertex. Use the distance found in step 1 as weights.
- Run Dijkstra to find distance between the two new nodes.
$>O(m \log n)$

Elder price robot

$>$ Problem summary: For each day, calculate how far back you need to go to to find a day which had a lower price.
$>$ Naive algorithm: repeat the algorithm for the junior price robot

- for each day:
- step back in time until you find a day with a lower or equal price
- report number of steps required
$>O\left(n^{2}\right)$ 皿

Elder price robot

$>$ Problem summary: For each day, calculate how far back you need to go to to find a day with has a lower price.
$>$ Better algorithm

- maintain a list B which holds the latest date the given price occurred. Initially all infinity long ago.
- in backwards order of the input list:
- check the list B for all possible prices $<=$ to today's price - remember the latest date found
- Compute difference of dates
- Update the date of the current price in B

$$
>O\left(n^{2}\right)
$$

Elder price robot

$>$ Problem summary: For each day, calculate how far back you need to go to to find a day with has a lower price.

> Using a segment tree
$>$ Better algorithm

- in backwards order of the inpur list:
- check the list B for all possible prices $<=$ to today's price - remember the latest date found
- Compute difference of dates
- Update the date of the current price in B

$$
>O\left(n^{2}\right) O(n \log n) \Theta
$$

Elder price robot

$>$ Problem summary: For each day, calculate how far back you need to go to to find a day with has a lower price.
$>$ Even better algorithm

- maintain a stack with pairs (price, date) - the invariant is that both price and date is sorted
- go through the list backwards:
- pop all larger prices from the stack
- the top of the stack now holds the next occurrence of a number smaller or equal
- if empty, then "infinity"
- put yourself on the stack
$>O(n)$

Author: Torstein Strømme

100 meter dash

$>$ Problem summary: Given GPS locations with timestamps, what is the fastest 100 m ?
$>$ Naive algorithm:

- Guess every each location $L_{\text {start }}$. Then find the time used to run 100 m starting starting from $L_{\text {start }}$ and search forwards to find the nearest location $L_{\text {end }}$ where the distance ran between $L_{\text {start }}$ and $L_{\text {end }} \geq 100$.
- Add up the time needed at each full segment. Compute the fractional time required for the last segment.
- Observation: it might be better to let the first segment be fractional; deal with this case by also running algorithm backwards.
- Observation: not necessary to account for the case where both starting and ending segments are fractional.
$>O\left(n^{2}\right)$ (-1

100 meter dash

$>$ Problem summary: Given GPS locations with timestamps, what is the fastest 100 m ?
$>$ Smarter algorithm:

- Build up a distance array $\mathrm{D}, \mathrm{D}[\mathrm{i}]$ holding total distance from start to L_{i}.
- Using this we can find the distance (time) between two locations in $O(1)$ time.
- Use a "sliding window" to move over the list of points::
- Keep two pointers start and end; when distance $L_{\text {start }}$ to $L_{\text {end }}$ is smaller than 100 , increment end.
- Otherwise, compute the the time starting at start as before, and then increment start.
- Remember fastest time as you go.
- Slide over the points in both directions.
$>O(n)$

Live aid

$>$ Problem summary: Pick a non-overlapping set of intervals for the concert such that the attention is maximized. Output the total attention.
$>$ Algorithm

- (Weighted Interval Scheduling)
- Sort intervals by end time
- $\quad p(i)$ is the latest interval (by end time) that does not overlap with interval i. Find it by a binary search.
- $D P[i]$ is the total attention of the optimal scheduling of intervals from 0 to i
- $D P[i+1]=\max \left(D P[i-1], D P[p(i)]+a_{-} i\right)$
$>O(n \log n)$

Meticulous smoothing

$>$ Problem summary: Difference in thickness between consecutive sections of wood can be no more than 1 . What are the fewest strokes of sandpaper needed to obtain this?
$>$ Each point provides some upper limit for all other points

Meticulous smoothing

$>$ Each point must respect limits set by all other points on both sides.

- Requirement depends on height and distance
- Must respect the strictest requirement

Meticulous smoothing

$>$ Observation: we only need to know the strictest limit from each side.
$>$ Algorithm:

- Walk along the list from left to right, and remember the strictest limit as we go.
- At each step, the limit imposed by previous items is relaxed/heightened by 1 .
- Compare limit set by previous items with limit given by this item (i.e. the thickness at this point); keep the strictest limit. Mark the position with the limit.
- Do the same backwards.
- Final thickness is minimum of forward and backward limit.
- Compute the differences for each point, and return their sum.
$>$ Runtime: $O(n)$

F1 racing

$>$ Problem summary: A car uses $r+b^{*} x$ seconds to complete one lap on x laps old tires. Given r, b, the time a pit stop takes, and the number of laps: what time is needed to finish a race?
$>$ Observations:

- Given a fixed number of pit stops, it is always best to distribute them as evenly as possible through the race.
- The problem boils down to finding the optimal number of pit stops
- Time required as a function of pit stops is either
- non-decreasing (pit stop time is very large)
- non-increasing (pit stop time is 0), or
- follows a U-curve
- Hence, we can ternary search the number of pit stops.

F1 racing

$>$ Problem summary: A car uses $r+b^{*} x$ seconds to complete one lap on x laps old tires. Given r, b, the time a pit stop takes, and the number of laps: what time is needed to finish a race?
$>$ How to find racetime using A pit stops?

- segments $=A+1$
- long_segments $=\mathrm{n} \%$ segments
- short_segments $=$ segments - long_segments

$$
\begin{aligned}
& \text { laps_per_long_segment }=\lceil\text { total_laps } / \text { segments }\rceil \\
& \text { laps_per_short_segment }=\text { Ltotal_laps } / \text { segments }\rfloor
\end{aligned}
$$

- The rest can be done in $O(1)$ time using math.
- \quad Sum $1 . . n \rightarrow n(n+1) / 2$

F1 racing

$>$ Problem summary: A car uses $r+b^{*} x$ seconds to complete one lap on x laps old tires. Given r, b, the time a pit stop takes, and the number of laps: what time is needed to finish a race?
$>$ Runtime w/ternary search + constant time calculation: $O(\log n)$

> Also accepted:

- Try every number of pit stops up to square root of number of laps + try every number of laps per segment up to square root of number of laps, using constant time calculations $\rightarrow \mathrm{O}(\sqrt{n})$
- Ternary search + linear calculation of sum $1 \ldots \mathrm{n}$ accepted in some languages (e.g. $\mathrm{C}++) \rightarrow O(n \log n)$

Setting bounds that killed this would have required the use of 128 -bit integers or more to avoid overflow issues. So we didn't.

Bombs

$>$ Problem summary: Move bombs to their specified locations; at most one movement through each edge per day, at most one movement for each bomb per day.
$>$ Visualize the sample test case:

Bombs

$>$ Problem summary: Move bombs to their specified locations; at most one movement through each edge per day, at most one movement for each bomb per day.
$>$ Guess (binary search) how many days are needed

$>$ Create the "grid graph" of the guessed height

$>O\left(n(n+t)(m(n+t))^{2} \log (n+t)\right)(\mathrm{w} /$ Edmonds-Karp)

Statistics

$>$ Number of teams: 37
$>$ Number of participants: 83
$>$ Number of submissions: 973

- of these 8 were submitted by a team for a problem that they had already solved.
$>$ Number of accepted submissions: 145
$>$ First accepted submission: 00:04:47 (Junior price robot - solved by Game Hoppers)
$>$ Last accepted submission: 04:58:49 (Glitching screen - solved by Digitas)
$>$ Number of commits to problem repository: 585

Copyright notes

$>$ The problems, solution slides, and other materials produced for Bergen Open 2019 are released under CC-BY-SA 4.0.
$>$ Pictures

- Archipelago https://www.flickr.com/photos/158674840@N02/32622205467/ CC-BY 2.0, Tom Patterson
- Bombs https://pixabay.com/vectors/bomb-cartoon-iconic-2025548/ Pixabay License, OpenClipart-Vectors
- Coins https://www.hippopx.com/en/gold-coin-business-money-pile-gold-coins-stack-325690 CC0
- Doomsday https://www.flickr.com/photos/42034606@N05/27076955039 Public domain, Coconino NF Photography
- F1 racing https://www.flickr.com/photos/65667643@N00/125026340 CC-BY-2.0, ariffjamili
- Glitching screen https://unsplash.com/photos/oW 40ndUnRc Unsplash license, Ivan Heinzer
- Irritating accountants https://digitaltmuseum.org/011024054047/hink CC-BY 4.0, Flygvapenmuseum
- Junior/elder price robot https://www.flickr.com/photos/30478819@N08/50958754723 CC-BY 2.0, Marco Verch
- King of cans https://unsplash.com/photos/-2lJGRIY5P0 Unsplash license, Nick Fewings
- Live aid https://unsplash.com/photos/hzgs56Ze49s Unsplash License, Anthony Delanoix
- Meticulous smoothing https://commons.wikimedia.org/wiki/File:Yew-wood.jpg CC-BY-SA 4.0, Tim van de Staak

