
NCPC 2008

Presentation of solutions

Nils Grimsmo

2008-10-04

Problem Authors: Per Austrin & Nils Grimsmo NCPC 2008 solutions



E - Event Planning

Problem

Given a budget B , N participants, H hotels to choose between, and
W di�erent weekends you can go, �nd the cheapest hotel with
enough availability.

Solution

minimum := B + 1

for h := 1..H:

if N * price[h] < minimum:

for w := 1..W:

if availability[h][w] >= N:

minimum := N * price[h]

if minimum <= B:

print minimum

else:

print "stay home"

Problem Authors: Per Austrin & Nils Grimsmo NCPC 2008 solutions



B - Best Compression Ever

Problem

Given N di�erent �les, is it theoretically possible to store them as
compressed �les of length at most b? Can theoretically have
contents of all �les in de-compressor program source code, but
must be able to distinguish all the �les. So the question is how
many unique �les of length at most b bits can you have?

Observations

Can have compressed �les of lengths 0, . . . , b.

2b unique �les of length b, 2b−1 of length b − 1, etc..∑
i=0..b 2

i = 2b+1 − 1

Implementation

if ((1LL << (b+1)) - 1 >= N ) print "yes"

else print "no"

Problem Authors: Gunnar Kreitz & Per Austrin NCPC 2008 solutions



G - Getting Gold

Problem

Simulate the players walk through the maze, never moving to an
unexplored square if sensing a draft. Count the number of gold
pieces you can safely pick up.

Solution

Procedure �nd(y,x):

If square is wall or marked visited: return 0

If square has gold: gold = 1, else: gold = 0

Mark square visited

If some neighboring squares has trap: return gold

gold += �nd(y-1,x) + �nd(y,x-1) + �nd(y+1,x) + �nd(y,x+1)

return gold

Call �nd(y,x) with y,x for starting position

Problem Author: Gunnar Kreitz NCPC 2008 solutions



A - Aspen Avenue

Observation

If you move the trees in order from the �rst to the last, it will
always be best �ll the �rst free hole on either the left or right side.

Recursion

Cost with l trees left to place on the left and r on the right:

C (l , r) =


0 if l + r = 0

min

{
C (l − 1, r) + dist. left hole if l > 0

C (l , r − 1) + dist. right hole if r > 0
otherwise

Implementation

Sort the trees on drop position.

Memoize or use DP to avoid exponential run-time from
recursion.

Problem Author: Andreas Björklund NCPC 2008 solutions



C - Code Theft

Problem

If the lines in the fragments are viewed as symbols, the task is
to �nd the length of the longest common substring (in this
string of lines) between each fragment and the new snippet,
reporting the fragments for which it is maximal.

Strings both in the repository of code fragments, and in the
new snippet, must have leading and trailing space removed,
and other multiple spaces normalized to one space.

Naïve solution

For each code fragment:

For each line in the fragment:

For each line in the new snippet:

Match as many lines downward as possible

O(N · n3 ·m), n maximal fragment length, m maximal line length.
Problem Author: Stein Norheim NCPC 2008 solutions



C - Code Theft - continued

Speed ups

Avoid string compare:

Hash all strings once to speed up comparison.
or sort all strings, extract unique, and use order (loose O(m)
factor).

If you already have compared starting at position j in a
fragment and position k in the new snippet, and found a
match of say 7 lines, there is no point in a comparison starting
at j + 1 and k + 1, which will give 6 lines.

Try all O(n) alignments of repository fragment and new
snippet, checking consecutive aligned lines for match.

New running time: O(N · n2).

Problem Author: Stein Norheim NCPC 2008 solutions



C - Code Theft - continued

Optimal solution

Build a su�x tree for the string of lines (string identi�ers)
from the new snippet.

For each fragment from the repository, �nd its matching

statistics.

Running time: Linear in the total number of input characters.

Problem Author: Stein Norheim NCPC 2008 solutions



I - Introspective Caching

Problem

Given a cache of size c , n di�erent objects in total, and a object
accesses known in advance, how many times do you have to read
an object into cache, given an optimal strategy?

Solution

Maintain the following:

The list of accesses (mapping from time to object).

For each object, the list of remaining access times in order.

The set of cache resident objects.

A sorted mapping from �rst upcoming access time, to which
object, but only for resident objects.

When you need to evict something, use the sorted mapping to �nd
the resident object which will be needed again last. Update all data
structures when taking things in and out of the cache.

Problem Author: Gunnar Kreitz NCPC 2008 solutions



D - Dinner

Problem

Given a group of m people, is it possible to pick a (smallest) year
Y , and divide the group into two parts, such that every pair in the
�rst group (1) met before Y , while every pair in the second group
(2) met in or after year Y ? None of the two parts must be larger
than 2

3
n.

Problem Author: Andreas Björklund NCPC 2008 solutions



D - Dinner - continued

Solution

Try all years Y . For every person, count the number of others he
met before (mb), and in/after (ma) year Y (mb +ma = m). You
can sometimes decide directly whether a person goes in 1 or 2:

mb + 1 < 1

3
m⇒ he cannot be in 1.

ma + 1 < 1

3
m⇒ he cannot be in 2.

From there, we'll just have to try and fail:

Put person in 1⇒ put those met in/after Y in 2.

Put person in 2⇒ put those met before Y in 1.

Branch and bound, trying the alternative eliminating the most �rst.

Problem Author: Andreas Björklund NCPC 2008 solutions



H - Hard Evidence

Problem

Given a convex polygon of n vertices, and a circle of radius r
strictly enclosing it, �nd the maximal view angle of the polygon
from a point on the circle.

Solution

For all possible pairs of vertices i , j :

Search for the position p on the circle where the angle between
the lines p − i and p − j is maximal.
Start at the �rst and last position from which the line segment
is visible.
Do a golden bound search (trinary search) for a maximum, as
the view angle function in now strictly convex.

This of course involves some trigonometry...

Problem Author: Andrew Stankevich NCPC 2008 solutions



F - Fixing the Bugs

Problem

Given is T hours, and B bugs to �x, where you work on one bug
each hour. Each bug has a severity si and a �x probability pi . If
you fail on �xing a bug, it's �x probability now becomes pi · f ,
where 0 ≤ f ≤ 1 is a �xed measure of your self esteem.

Recursion

S(T , p1, · · · , pB , s1, · · · , sB)

= max
1≤i≤B


0 if T = 0

pi ∗ (si + S(T − 1, . . . , 0 · si , . . . ) otherwise

+(1− pi ) ∗ S(T − 1, . . . , f · pi , . . . )

Problem Authors: Mikael Goldman & Per Austrin NCPC 2008 solutions



F - Fixing the Bugs - continued

Observations

Of course, running DP on all these variable doesn't work, but:

You can greedily make a local choice to �x the bug with
maximal current pi ∗ si (proof omitted...).

You can do some clever DP:

Given a time left, a set of un�xed bugs, and a number of
failures on un�xed bugs, you will always do the same choices.
Therefore you can run DP on these three, where the second is
a bit pattern.
Keep the pi 's updated as you recurse with failures

If you also do DP on the greedy local choice, you get a running
time of O(T 22B).

Problem Authors: Mikael Goldman & Per Austrin NCPC 2008 solutions



J - Just a Few More Triangles

Problem

Given an integer n, �nd the number of triples a, b, c such that
a2 + b2 ≡ c2 mod n, where 1 ≤ a ≤ b < n and 1 ≤ c < n.

Solution

n to large for naïve solution.

Need Chinese remainder theorem or FFT, pluss some tricks...

Update slides may come later...

Problem Author: Per Austrin NCPC 2008 solutions


