
South German Winter Contest 2011

February 05, 2011

The Problem Set

No Title Page

A Age of the Universe 3

B Bazinga! 5

C Big Bang Research 7

D Fuel Revolution 9

E How many Universes? 11

F Inclined plane 13

G Language Confusion 15

H Next Big Bang 17

I Penny's Business 19

J Sheldon's Toy Soldiers 21

K Top Secret II 23

L Wedding Invitation 25

Good luck and have fun!

This page is intentionally left (almost) blank.

2

Problem A

Age of the Universe

Recently, a clever researcher proposed a formula for the expansion of the universe as a function of
the age t of the universe:

expansion(t) = a

√
b · tc · log1+d(1 + te) · exp(tf)

In order to verify his formula, he gives you the values for the coefficients and the current expansion.
Can you calculate the age of the universe?

Input

The first line of the input gives the number of test cases C (0 < C < 100). Each of the test
cases is described with seven integers on one line. The numbers are given in the following or-
der: expansion(t), a, b, c, d, e, f where you may safely assume 1 < expansion(t) < 10 000 and
0 < a, b, c, d, e, f ≤ 5.

Output

For each test case, print one line containing the estimated age of the universe for the given coefficients
and expansion. You may safely assume that 0 ≤ t ≤ 42.
Your output should have an error of at most 10−4.

Sample Input Sample Output

5

2 1 1 1 1 1 1

100 1 1 1 1 1 1

9999 5 1 1 1 1 1

42 1 2 3 4 5 1

23 3 2 1 5 2 3

0.891631746526

2.877690715650

40.663063754437

1.508742619080

2.009768252719

3

This page is intentionally left (almost) blank.

4

Problem B

Bazinga!

When Sheldon fools someone (in the majority of cases Leonard is his victim), he uses the term
Bazinga! as a follow up to his jokes or pranks. Usually, he does not see Sheldon’s jokes coming, but
this time Leonard found a paper with a Java class named “Bazinga” on it. He guesses that Sheldon
prepares another prank however Leonard is not good with programming languages.

Sheldon’s Bazinga! class

import java . u t i l . ∗ ;

pub l i c c l a s s Bazinga {
pub l i c s t a t i c void help (i n t [] numbers , i n t pos) {

Stack<Integer> s tack = new Stack<Integer >() ;
f o r (i n t i = 0 ; i < pos ; i++) {

s tack . push (numbers [i]) ;
}
f o r (i n t i = 0 ; i < pos ; i++) {

numbers [i] = stack . pop () ;
}

}

pub l i c s t a t i c void proce s s (i n t [] numbers , i n t l en) {
f o r (i n t i = len ; i > 1 ; i−−) {

i n t pos = 0 ;
f o r (i n t a = 0 ; a < i ; a++) {

i f (numbers [pos] < numbers [a]) {
pos = a ;

}
}
i f (pos == i −1) cont inue ;

i f (pos > 0) help (numbers , pos + 1) ;

he lp (numbers , i) ;
}

}

pub l i c s t a t i c void main (St r ing [] a rgs) {
Scanner sc = new Scanner (System . in) ;
i n t numCases = sc . next Int () ;

f o r (i n t i = 0 ; i < numCases ; i++) {
i n t numNumbers = sc . next Int () ;
i n t numbers [] = new in t [numNumbers] ;

f o r (i n t j = 0 ; j < numNumbers ; j++) {
numbers [j] = sc . next Int () ;

}

proce s s (numbers , numbers . l ength) ;

f o r (i n t j = 0 ; j < numNumbers − 1 ; j++) {
System . out . p r i n t (numbers [j] + ” ”) ;

}
System . out . p r i n t l n (numbers [numNumbers − 1]) ;

}
}

}

Leonard tried to compile and run the program but it seems to be terribly slow. Can you help him
to write a faster variant?

Input

Leonard already found out that some test cases are given as input. The first line of the input gives
the number of test cases C (0 < C < 100). Each of the test cases is given on two lines: the first line
of each test case specifies the number N of numbers that are processed by the process method in
Sheldon’s code (0 < N < 100 000). The second line of each test case gives N numbers, each number
is positive and at most 231 − 1.

Output

For each test case, your program should print one line containing the same numbers as they would
have been printed by Sheldon’s code.

(There is no Sample Input or Output provided for this problem.)

5

This page is intentionally left (almost) blank.

6

Problem C

Big Bang Research
Doing research about the big bang – which led to the formation of the universe – can be painful
due to the large scales in space. The area we want to investigate should be as small as possible.
Therefore, we split the universe into a grid and are only interested in the most promising of the
resulting cells.
You are given a couple of cuboids that are axis-aligned with respect to the grid. Each of these
cuboids has an interest value assigned to it (higher is better). If cuboids intersect, the interest value
for each grid cell in the intersected volume is calculated by adding the values of the corresponding
cuboids.
Given a set of cuboids, can you tell us which cell of the grid is the most promising one?

Figure 1 – Cuboids from second and third sample input. Overlapping volumes are shaded. In the example
on the left, there are 16 grid cells each of which has an interest value of 12 + 3 = 15. You have
to select the cell with the lowest coordinates: (−1, 0,−1). Cells are identified by their lower left
corner.

Input

The first line of the input gives the number of test cases t (0 < t < 100). Each of the test cases is given
as follows: the first line of each case gives the number of cuboids C (0 < C < 25). Then follow C lines,
first giving the three-dimensional coordinates for two opposing corners of each cuboid, then its interest
value. The coordinates are specified with integers in the interval −1 000 000 < xi, yi, zi < 1 000 000.
Each coordinate for the first corner is lower than the corresponding coordinate for the opposing
corner. The interest value is in the interval 0 < i < 1 000.

Output

For each test case, print one line containing the identifying coordinates of the most promising grid
cell and the corresponding interest value. If there are several of them, print the cell with the lowest
x-coordinate. If there are two with the same x-coordinate, print the cell with the lowest y-coordinate.
If there is still a tie, print the one with the lowest z-coordinate.

Sample Input Sample Output

4

1

-10 -10 -10 10 10 10 42

2

-1 -4 -1 3 4 1 12

-3 0 -1 5 2 1 3

3

-1 -4 -1 3 4 1 12

-3 0 -1 5 2 1 3

1 -1 -3 3 2 4 8

5

-1 -4 -1 3 4 1 12

-3 0 -1 5 2 1 3

1 -1 -3 3 2 4 8

-999999 -999999 -999999 999999 999999 999999 815

-1234 -1234 -1234 -1233 -1233 -1233 815

-10 -10 -10 42

-1 0 -1 15

1 0 -1 23

-1234 -1234 -1234 1630

7

This page is intentionally left (almost) blank.

8

Problem D

Fuel Revolution

Probably you remember that Leonard was working very hard on a rocket fuel for the government.1

Sheldon and Leonard use the research results to invent a new kind of car fuel. Producing this fuel is
easy and cheap. Furthermore, the cars that consume this fuel are almost as fast as light. But there
is one problem they have to face when handling this new resource: The fuel tank has to be very safe
because the fuel is highly explosive (remember the elevator). Therefore, the new fuel tank has to be
as small as possible.

Thus, Sheldon and Leonard want to know how large their car fuel tank has to be to be useful in
practice. While driving to their destinations, Sheldon and Leonard can refuel arbitrarily often at
fuel stations. In order to calculate the tank’s size, they want to know how far they can go on a
trip without refueling. They ask you to calculate the maximal distance between two fuel stations.
Of course, they choose optimal paths to minimize this maximal distance and hence the tank’s size.
Sheldon and Leonard always start and end at their favorite fuel station.

Input

The first line of the input gives the number of test cases C (0 < C < 100). The first line of each such
test case holds N , M , T , and Q: the number of nodes in the map (2 ≤ N ≤ 10 000), the number
of roads in the map (0 ≤ M ≤ 50 000), the number of fuel stations (1 ≤ T ≤ 20), and the number
of queries (0 ≤ Q ≤ 5 000). Each of the following M lines holds three integers n1, n2, and c that
describe a road. Each line specifies one one-way-road from n1 to n2 with cost c (0 ≤ n1, n2 < N ,
n1 6= n2, 0 < c ≤ 1 000). It is assured that for every two nodes n1 and n2 there is at most one road
from n1 to n2. The next line has T integers ti (0 ≤ ti < N) that are nodes with fuel stations –
the first fuel station in this list (t1) is the favorite fuel station of Sheldon and Leonard. Each of the
following Q lines gives an integer qi (0 ≤ qi < N , qi 6= t1) that specifies a possible destination for
Sheldon and Leonard.

Output

For each test case print Q + 1 lines. The first line should be “Case C:” where C is the index
of the test case. Each of the following Q lines should give one integer: the best minimal distance
between any two fuel stations along all the potential routes from their favorite fuel station to node
qi and back. If it is not possible at all to reach the destination and return to the start node, print
“IMPOSSIBLE”.

Sample Input Sample Output

1

7 8 5 6

0 1 5

1 2 5

2 6 5

2 3 4

3 0 7

3 4 3

5 0 17

6 0 10

0 1 5 4 6

1

2

3

4

5

6

Case 1:

10

10

16

IMPOSSIBLE

IMPOSSIBLE

10

1When experimenting with Howard’s rocket, Leonard’s math caused the rocket to explode in an elevator.

9

This page is intentionally left (almost) blank.

10

Problem E

How many Universes?

God is bored. So he decides that something must be created. In his sandbox he starts testing out
elements. He creates a certain number of elements, e.g. iron, gold, hydrogen, and what else he can
think of. But pure elements are boring too, so he thinks about combining them to create big bangs
and corresponding universes. He wonders how many different universes he can create from a certain
number of elements. So, e.g. for his first test, he creates five elements. When using every possible
combination of four of his five elements, he can create five big bangs and thus five different universes.
When creating universes the order in which the elements are selected does not matter. Also one
element cannot be taken twice. When he takes three of his five elements, he can create ten universes.
With all five elements just one universe can be created.
God discovers that universes based on just a little number of elements do not give much excitement
and do not last long. Also he wants to have more choices so he creates more and more elements
and picks more elements from them. Imagine at one point he even creates 55 different elements and
starts a whole bunch of universes in parallel because he really likes the game. With all 55 elements
he can again just create one universe, but when just taking 33 of 55 he can learn about the fate of
1 300 853 625 660 225 universes.
You live in a universe with 118 elements. Usually, in universes of this size, some kind of life forms
exist, that is able to handle numbers and calculations. So God is testing them and you. He gives
you his current number of created elements and he tells you how many elements thereof he is going
to take for the creation of universes. You must calculate how many parallel universes he can create.
And you should calculate fast otherwise your universe will be terminated early because it is no fun
to watch.

Input

God is gracious, so the maximum number of elements he will be using for your test is 55. In his test
definition, he will first give you the number of different tests C (0 < C < 2 000). Each test consists
of two numbers: the number of all possible elements E and the number of elements T taken from
these for creating universes (1 ≤ E ≤ 55, 1 ≤ T ≤ E).

Output

Your task is to calculate the number of possible universes for each test case. Just output this number,
each number should be written in a new line.

Sample Input Sample Output

6

5 5

5 4

5 3

5 2

55 33

55 27

1

5

10

10

1300853625660225

3824345300380220

11

This page is intentionally left (almost) blank.

12

Problem F

Inclined plane

As an experimental physicist, Leonard has a lot of inclined planes (ramps) each of which is one
inch wide. He wants to store them in a square area. To save space, he rotates the ramps in a way
that they stand on their smallest side. To be able to play with his matchbox cars on the ramps he
puts two ramps in a row, so that they are connected at their lowest points. To get his square of
ramps financed he sets up an experiment that substitutes parts of his ramps in the array with ice
replications. He needs many of these ice replications and asks you to calculate how many water he
needs for the substitutes.
Leonard uses the coordinates of an axis-aligned rectangle to specify which part of the ramp array has
to be replaced by ice substitutes, namely exactly those parts of ramps that stand on the specified
floor area. The substitute ice blocks should have the same surface as the original ramps. An example
of an array is given in the figure. The different densities of ice and water can be ignored as measuring
inaccuracy.

Figure 2 – Array of 2nd test case with 1st query

Input

The input starts with the number of test cases C in one line (0 < C < 100). Each test case starts
with a line consisting of the number of rows n. Then n lines follow, each describing one row of the
ramp array, starting with the frontmost row. Each description of a row consists of three integers:
The length l of the left ramp, the slope s1 of the left ramp in height / length and the slope s2 of the
right ramp in the same notation. The next line gives the number of queries q, followed by q lines
each describing one query. Each query specifies one rectangle of the floor of the ramps array that
needs to have its ramps / ramp segments substituted. The four integers specify the front left corner
followed by the back right corner of the rectangle ((0, 0) is front left).
Consider the following limits: 0 < n, s1, s2, q ≤ 40 000 and 0 < l < n.

Output

The volume under the ramps for each query in inch3 with two digits after the point.

Sample Input Sample Output

2

4

2 1 1

2 1 1

2 1 1

2 1 1

2

0 0 4 4

1 1 3 3

3

2 1 1

1 3 1

2 2 3

2

0 0 1 1

2 0 3 1

16.00

2.00

1.50

0.50

13

This page is intentionally left (almost) blank.

14

Problem G

Language Confusion

Leonard cannot stand Howard for using foreign languages — especially when hitting on Penny. He
collected word lists for the different languages Howard uses. So at least he can call out phrases
like “Oh, you’re talking in French again. Feeling very cool, yeah?”. But looking up the words in a
notebook is far too slow. You are supposed to help Leonard with this issue.

Input

The first line contains the number of test cases C (0 < C < 100). Each test case starts with a line
that holds the number n of languages Howard uses (0 < n ≤ 5). Then n blocks follow.
The i-th block describes the i-th language. Its first line contains the name of the language and the
number of words ci (1 ≤ ci ≤ 100) known to Howard in that language. Then follow the ci words
that make up the word list, each on a single line.
After the blocks there is the description of the queries. The first line contains the number of queries
q (0 < q ≤ 20). Each of the following q lines contains a single word.
The words and language names only contain the letters a-z and A-Z and have at most 30 characters
each. The case of the letters does not matter for the comparison as you can see in the sample input.

Output

For each query, print the name of the language to which the word belongs (according to the word
lists). If there are multiple possible languages, print “Ambiguous”. If the word does not appear in
any of the lists, print “Unknown”.

Sample Input Sample Output

2

3

English 5

test

girl

and

see

computer

German 3

test

Auto

See

Italian 4

Compagnio

lago

Compagnio

antico

3

compagnio

Test

hand

2

Suomi 2

LAGO

kieli

English 1

nothing

3

lAgO

girl

compagnio

Italian

Ambiguous

Unknown

Suomi

Unknown

Unknown

15

This page is intentionally left (almost) blank.

16

Problem H

Next Big Bang

As everybody knows, it is assumed that there was a big bang in the past. Since then, the universe
is extending. The question is whether the gravitation between different galaxies is strong enough to
stop the expansion at some point in the future. Several physicists work on this issue and performed
a few measurements. They wrote down the coordinates of N galaxies at two different times (some
years in the past and now).
To simplify their model, the physicists assume that the galaxies move linearly.2 An important value
in the model is the “safe factor”. The safe factor of two galaxies is calculated by dividing dmin by
dcur whereby dcur is the current distance between the two galaxies and dmin is the minimal distance
in the future.
If two galaxies are striding away from each other from now on (i.e. the distance is increasing), the
safe factor is one. On the other hand, if two galaxies will crash in the future (i.e. the distance is
zero at some point), the safe factor is zero. The safe factor over all given galaxies is the minimal
safe factor of all pairs of galaxies. You can assume that no two galaxies are currently at the same
position. As the physicists are busy doing additional measurements they ask you to calculate the
safe factors for some systems of galaxies. Based on your results, the physicists will decide whether
it is possible that some galaxies will crash or not.

Input

The first line of the input provides the number of test cases C (0 < C ≤ 100). The first line of
each test case holds the integer N (2 ≤ N ≤ 50). Each of the following N lines contains six integers
xpi, ypi, zpi, xci, yci and zci (−106 ≤ xpi, ypi, zpi, xci, yci, zci ≤ 106). The first three integers specify
the position of the i-th galaxy in the past and the second three integers specify the current position
of the i-th galaxy.

Output

For each test case print one line of output containing the safe factor of the corresponding system of
galaxies. Your output should have an error of at most 10−5.

Sample Input Sample Output

4

3

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 2

2

0 1 1 0 2 1

0 0 0 0 1 0

2

0 0 0 0 0 0

0 -2 1 0 -1 1

4

1 2 3 4 5 6

7 8 9 0 0 0

-500 -500 -500 -250 -250 -250

-20 -23 -42 8 15 4711

1.0000000000

1.0000000000

0.7071067812

0.0031646996

2In fact, the galaxy movement is non-linear because of the gravitation but we neglect this for this estimation.

17

This page is intentionally left (almost) blank.

18

Problem I

Penny’s Business

Penny is broke – once again. In need of money, she remembers the time when she founded a business
and sold Penny Blossoms. She decides to start up her business again. Because of the disaster when
she last tried it, she cannot ask one of the boys for help. Thus, she has to do it all on her own.
She needs 24 minutes to create one Penny Blossom. Unlike last time no one sets up an online shop
for her, so she takes offers by mail. All orders come in on the first day of the month, so she can
plan one month ahead. This allows her to also refuse orders if she will not be able to fulfill them.
Hard-working as she is, she does not want to work more than eight hours per day, but will also work
on holidays and on the weekends.
Help Penny to choose which orders to take. She only takes orders she can fulfill completely. Her
goal is to accept as many orders as possible in order to increase her customer base.

Input

Input starts with a positive number, the number of test cases (or months) C, on a single line
(0 < C ≤ 100). After that, a single line per test case follows. The line starts with n, the number
of orders, followed by n pairs of numbers that specify both the day of the month di on which the
order is due (it is sufficient to have the blossoms ready at the end of that day) and the number ai of
ordered blossoms (0 < n < 2 000, 1 ≤ di ≤ 30, 1 ≤ ai ≤ 600).

Output

Output a single line per test case, containing the maximal number of orders that Penny can accept
in the corresponding month.

Sample Input Sample Output

3

3 2 20 3 20 1 20

4 1 4 2 42 3 50 4 20

6 20 47 11 42 23 7 3 30 2 40 3 10

3

3

5

19

This page is intentionally left (almost) blank.

20

Problem J

Sheldon’s Toy Soldiers

When he was a kid Sheldon started collecting toy soldiers. Compulsive as he is, he has a strict
principle for lining them up in a single line on his shelf in the same order he bought them. Sometimes
he wants to select soldiers to form a detachment. The detachment has to be ordered from the tallest
to the smallest toy soldier. To save time (you have to be quick when there is war!), Sheldon only
allows himself to walk once along the shelf and select soldiers in the order they appear on the shelf.
But to ease the process he also needs them to be picked so that after picking they are lined up from
tallest to smallest. On each pick, he can only select a soldier that is smaller than all the soldier
picked before. Given a description of the soldiers on Sheldon’s shelf, what is the largest number of
soldiers he can select with that picking process?

Input

Input starts with a positive number, the number of test cases C, on a single line (0 < C ≤ 100). After
that, a single line per test case follows describing Sheldon’s soldiers on the shelf. The line starts with
n (1 ≤ n ≤ 2 000), the number of toy soldiers, follows by n positive integers si (1 ≤ si ≤ 20 000), the
height of the soldiers in the order they appear on the shelf.

Output

Output a single line per test case, containing the maximal number m of soldiers he can select,
followed by the sum of the heights of the soldiers picked. If there are multiple possibilities to select
m soldiers, maximize the sum of their heights.

Sample Input Sample Output

2

5 1 2 3 4 5

6 10 4 11 5 3 4

1 5

3 20

21

This page is intentionally left (almost) blank.

22

Problem K

Top Secret II

Once again, things get complicated with Sheldon. He is currently doing research somewhere near
the north pole. For an unknown and probably strange reason, he wants to communicate only by
means of encrypted messages. To display a message, he uses a bunch of LEDs that he can control
remotely. The fact that only the number of illuminated LEDs is important is of course only known
to Leonard.
He explained the encryption process to Leonard with simple words:

• define N as the total number of LEDs

• define S as the number of encryption steps

• define X as the number of illuminated LEDs

• a single step is defined as follows: Consider the X illuminated LEDs in turn. For each of these
X LEDs either switch on another LED or if no more LED is unlit, switch off all LEDs.

Because Sheldon is able to power/unpower these lights remotely, he is able to send messages to
Leonard. Some of the lights are switched on, others are off. Then, he uses a second communication
channel (maybe the phone or mail) to communicate the number S of encryption steps to Leonard.
Leonard does not know how to decrypt Sheldon’s messages. Can you help him?

Input

The first line of the input gives the number of messages (0 < m < 100). Each of the messages
is provided in a single line with three integers N , S, and X. These numbers are defined as above
(0 < N < 100 000 000, 0 < S < 10 000, 0 ≤ X ≤ N).

Output

For each test case, print on a single line the number of LEDs that were illuminated before Sheldon
started the encryption. If there is no way to determine how many lights were switched on at the
beginning, print “Oops!” instead of the number.

Sample Input Sample Output

4

6 2 5

22 6 11

41 6 11

123454 10 1

3

7

Oops!

69564

23

This page is intentionally left (almost) blank.

24

Problem L

Wedding Invitation

Leonard and Sheldon are invited to a wedding. Searching for a proper present they have the idea:
Recently, they attended another marriage, where a champagne pyramid was presented. But Leonard
and Sheldon aren’t the guys who build a regular champagne pyramid.

They form a huge object that consists of N glass canisters of different sizes. The i-th canister has
the ground area Ai cm2. It is placed on top of a box of height bi cm. The height of the canister itself
is hi cm. Some of these glass canisters are connected by horizontal pipes. Each pipe connects two
different canisters at a specific height. Leonard is about to fill in champagne, but he does not want
to fill in too much. Therefore, he asks you to calculate what happens if he fills in L milliliters of
champagne into the first canister.3 As you know, Leonard is very accurate and fills in the champagne
very slowly to keep the champagne from foaming over.

Input

The first line of input is the number of test cases C (0 < C ≤ 100). The first line of each such
test case holds the two integers N and M , the number of canisters (1 ≤ N ≤ 20) and the number
of pipes (0 ≤ M ≤ 20). The following N lines contain three integers Ai, bi and hi as specified
(1 ≤ Ai ≤ 100, 0 ≤ bi ≤ 2 000, 1 ≤ hi ≤ 2 000). The next M lines contain integers n1, n2 and H
(bn1

< H < bn1
+ hn1

, bn2
< H < bn2

+ hn2
, 0 ≤ n1 < N , 0 ≤ n2 < N) which means that there

is a pipe at height H that connects canister n1 and canister n2. The next lines gives the number
of queries Q (0 < Q ≤ 100). Each of the following Q lines contains the amount L of champagne
in milliliter (0 ≤ L ≤ 10 000) that Leonard tries to fill into the first canister. You can assume that
there are no remains of champagne in the pipes after filling. Furthermore, there are no two pipes at
the same height. There is no pair of pipes that connects the same canisters. If a pipe connects cana

to canb, there is no other “path of pipes” from cana to canb.

Output

For each test case print Q + 1 lines. The first line should be “Case C:”, where C is the index of
the test case. Afterwards print a line for each query. If there is a canister that overflows, print
“OVERFLOW” in one line. In case that all L milliliters of champagne remain in the canisters, print N
numbers where the i-th number is the amount of milliliters of champagne in the i-th canister with 4
decimal digits after the point. Your output should have an error of at most 10−3.

(Sample Input and Output are provided on the next page.)

3Hint: exactly 1 milliliter fits in a canister of volume 1 cm3

25

Figure 3 – Illustration of last sample input, filled with 25 milliliters of champagne.

Sample Input Sample Output

4

2 0

1 0 10

100 0 10

2

10

11

2 1

2 2 20

2 4 20

0 1 16

1

40

4 3

24 1073 80

4 625 39

5 643 279

10 552 631

3 2 703

3 0 1091

1 3 636

3

1600

1700

1800

3 2

2 5 5

3 3 6

2 1 10

0 1 7

1 2 6

10

0

1

4

5

13

14

25

41

42

43

Case 1:

10.0000 0.0000

OVERFLOW

Case 2:

28.0000 12.0000

Case 3:

432.0000 125.1429 0.0000 1042.8571

432.0000 153.7143 0.0000 1114.2857

OVERFLOW

Case 4:

0.0000 0.0000 0.0000

1.0000 0.0000 0.0000

4.0000 0.0000 0.0000

4.0000 1.0000 0.0000

4.0000 9.0000 0.0000

4.0000 9.0000 1.0000

4.0000 10.2000 10.8000

7.7143 17.5714 15.7143

8.0000 18.0000 16.0000

OVERFLOW

26

