
International Collegiate Programming Contest
South German Winter Contest

January 31, 2009

Problem Overview:

No Title Page
A Buffet 3
B Candy Tycoon 4
C Chef de Mensa 5
D Food Production 6
E Master of Cooking 8
F Maximal Pizza Pleasure 9
G SDS, the Somewhat Different Sushi restaurant 10
H The Last Meal before a regional contest 11
I The maximal munch 13
J Wait to be seated 14
K Waiters’ Dance 16

Good luck and have fun!



2



Problem A

Buffet

Time Limit: 1 second(s)

Traditionally, a contest dinner or a buffet is part of a regional contest. Being this year’s contest
organizer you have decided to have a buffet. Your caterer proposes to create a special buffet with
n platters to serve m morsels. As no two morsels are alike, you can imagine that it will take quite
some time to prepare the buffet. Of course, m is large enough to feed the always hungry teams from
all over south western Europe.

One rule makes the buffet a special one: Each contestant must choose exactly n morsels of food,
one from each platter. This rule is rigorously enforced by so-called “food watchers” who check every
plate leaving the buffet. In spite of that rule, your caterer wants the contestants to still have the
maximum freedom for choosing their meals. He therefore wants to distribute the m morsels to the
n platters in such a way that the first person that chooses a meal can choose from the maximum
number of different meals, i.e. combinations of n morsels.

Input

The first line of the input contains the number of test cases. Each following line contains n and m
separated by a space (1 ≤ n ≤ m ≤ 10000).

Output

For each test case output how many morsels have to be placed on each platter to maximize the
number of different meals from which the first person in the buffet line can choose. Sort the number
of morsels for each platter from smallest to largest.

Sample Input

3
2 2
2 4
3 7

Sample Output

1 1
2 2
2 2 3

3



Problem B

Candy Tycoon

Time Limit: 1 second(s)

A candy company wants to enlarge and freshen up their product line. The latest idea they have
been working on is a completely new concept to arrange diverse candies in a quadratic box.
The candies that should be included into this amazing product have n different shells and n different
fillings, where every shell and every filling can be combined to a total of n · n different candies.
For ages, candy box layouts have been designed to contain the candies in a symmetric alignment,
but this is not what the management wants this time. Instead, the revolutionary idea is to find a
layout so that in every row and every column each type of shells and each type of fillings appears
exactly once.
The employees have been puzzling for a while to find the layouts for boxes of different sizes. But
unfortunately, this is not so easy for mathematically untrained people. Therefore, the management
decided to hire a computer scientist (you guessed it, it’s you!) to solve that problem for n × n box
sizes, where n is an odd number. The latter condition comes from the marketing department, which
is convinced that customers won’t ever buy boxes that contain an even number of candies.

Input

The first line of the input is a single integer c (1 < c < 20) that gives the number of test cases. The
next c lines each contain a single integer n (1 < n ≤ 51, n odd) that denotes the side length of the
box (n also denotes the number of different shells and fillings for this test case, of course).

Output

If there is no valid layout for a given n, simply print “no layout possible”. Otherwise, print an
n × n matrix with a valid layout. Encode the fields of the box as follows: For the shells use upper
case letters A, B, and so on. If n is larger than 26, continue after Z with lower case letters from a
to z. For the fillings attach integers starting from 1 to n. As shown in the sample output, print a
single space-separated valid layout.
Note that the output of two consecutive test cases should be separated by a blank line. If you find
multiple solutions, any of these can be presented.

Sample Input

2
3
5

Sample Output

A1 B2 C3
B3 C1 A2
C2 A3 B1

C5 E2 B4 A3 D1
B1 D3 A5 E4 C2
E3 B5 D2 C1 A4
A2 C4 E1 D5 B3
D4 A1 C3 B2 E5

4



Problem C

Chef de Mensa

Time Limit: 6 second(s)

Being the mensa’s chef is not easy. He has to decide which meals to cook so that all students are
satisfied (which is nearly impossible as we all know). Even worse, he has to look at finances even
if the mensa does not have to make much profit. Every day, he needs to choose from several dishes
and has to decide how many of each meal to cook (we assume that each cooked meal is also sold).
Moreover, each meal has different costs and some meals need to be made in the same devices which
have limited capacity. There are even more constraints that add even more complexity to the chef’s
tasks. Since you are a computer science student, the chef has asked for your help in deciding which
meals to cook.

Input

The first line holds two integer numbers 0 ≤ n ≤ 5 and 0 ≤ m ≤ 10. n is the number of different
meals to choose from and m gives the number of constraints. The following n lines contain the net
profit of each meal i in full Cents. Then m lines follow, each containing a constraint in the form
of k1 ∗ c1 + k2 ∗ c2 + ... < k0. The constraint can either be an equality (=) or an in-equality(<, >).
The ci (not given in the input) is the number of meal i that are cooked, ki is an arbitrary integer
constant. For example, the capacity of the oven may be that two times the number of meal 1 plus
the number of meal 3 must not be greater than 100. This is written as 2 0 1 < 100. For reasons
of simplicity, we assume that each meal is cooked at most 40 times.

Output

In the first line, output the maximum profit in Cents that the chef can achieve. Then in the
subsequent n lines print the ci, i.e. how often each meal i has to be cooked to maximize the profit,
sorted by their index i. All the meal numbers must of course be non-negative integers (there is no
need to use floating point numbers). If it is not possible to cook any meal e.g. because not all
constraints can be fulfilled, output Impossible. You can assume that the solutions are unique.

Sample Input

3 2
10
9
12
2 2 0 < 10
0 3 2 < 15

Sample Output

124
4
0
7

5



Problem D

Food Production

Time Limit: 1 second(s)

Food production these days is an extremely optimized process, usually performed by chemical tech-
nicians that use modern equipment which is similar to machines found in industrial automation. The
fabrication of something edible is split up into several small steps, in which multiple ingredients are
mixed and in which a chemical reaction produces one or more new ingredients, which are then fed
into the next machine. To avoid waste of resources, usually not only one kind of food is produced,
but a set of complementing ones, so that the side products of one kind of food are reused in creating
another kind. As these food assembly lines can grow quite complex, your help is needed to calculate
their throughputs.
You are provided with a description of the factory, which is built from multiple food processors. Each
of them has pipes through which the chemicals (ingredients) are input and output. The inputs and
outputs of the various processors are connected to build the food factory. The inputs and outputs of
each processor are assigned numbers that indicate the amount of chemicals consumed or produced
per hour. These indicate both the maximal values as well as the proportions. For processor 2 in the
example figure this means that the chemicals provided at the inputs are consumed at the same rate.
If there are 4 units of both input chemicals, 3 and 5 units of the output chemicals are generated.
The machines can also be set to a lower production rate, which scales all input and output amounts
by the same factor. To work seamlessly, the production rates of all machines have to be adjusted
such that all connected inputs and outputs are dealing with the same amount of chemicals.
Your task is to find scaling factors for each processor, such that the overall output rate (the sum of
all unconnected outputs) is maximized.

Input

The input consists only of one test case. The first line contains the number N (1 ≤ N ≤ 10000) of
food processors. Each of the next N lines holds the description of one food processor. Each of these
lines starts with two numbers I and O (0 ≤ I, O ≤ 10), giving the number of inputs and outputs,
followed by 3I + O numbers i1, . . . , iI , o1, . . . , oO, p1, j1, . . . , pI , jI . The ik and ok (all between 1
and 100 inclusive) give the per-hour-amount of input-ingredients and output-chemicals. The pk and
jk describe for each input, where the ingredients are taken from (pk-th food processor and its jk-th
resulting chemical, both zero-based).
You may assume that

• each resulting chemical is used as input by at most one other food processor,

• there are no loops and cycles (regardless of the production direction) in the assembly line, and
that

• the input is consistent, i.e., there are no indexing errors.

Output

Print the amount of all chemicals (food) produced per hour when the food factory runs at maximal
capacity, rounded to exactly 3 digits. These are the values of unconnected output pipes.
(Sample Input and Output are provided on the next page.)

6



Sample Input

4
0 1 4
0 1 2
2 2 4 4 3 5 0 0 1 0
1 1 2 2 2 1

Sample Output

3.200

7



Problem E

Master of Cooking

Time Limit: 2 second(s)

Cooking is an art and few people can master the enormous challenge of scheduling all the preparations
of the various parts of the meal (e.g. begin to stir, finish stirring, leave the house for shopping, return
with goods, begin to boil, . . .). Thus, the nature of cooking requires to have a feeling of durations
and time intervals. You are cooking novice and often lose track of time. Therefore, you wonder
whether your meal will be ready on time before your guests arrive. You remember the time when
you started cooking as well as the duration between many steps in the preparation of the meal. Of
course you do not remember each and every duration between any two steps. So the question is
when is the earliest and latest possible point in time when the meal will be finished?

Input

The first line of input contains the number of test cases. Each test case starts with a line that holds
the number of total steps 2 ≤ n ≤ 104 that are necessary to prepare the meal and the number of
durations 0 ≤ m ≤ 105 that you can remember. The next line states the time t0 when you started to
cook in seconds elapsed since 0:00:00 on January 1, 1970 (UTC) – of course cooking started before
11:00:00 on January 31, 2009 (CET). Each of the next m lines that follow contains three numbers a,
b and c. a identifies an arbitrary step preceding step b. The steps are numbered consecutively from
0 to n − 1 but in non-chronological order. c denotes the time interval in seconds between steps a
and b. Note that steps themselves are points in time. You may safely assume that meal preparations
never take longer than 80 years.

Output

For each test case, print the earliest and latest point in time when the meal is finished on one line
separated by a space. Times are denoted as seconds elapsed since 0:00:00 on January 1, 1970 (UTC).
If you cannot determine an upper bound for the end of the cooking process then print “never”
instead.

Sample Input

3
5 4
0
0 1 2
2 1 1
1 3 1
1 4 2
4 2
0
0 1 1
2 3 1
5 4
1
0 1 1
1 2 1
3 2 100
1 4 100

Sample Output

4 4
1 never
200 200

8



Problem F

Maximal Pizza Pleasure

Time Limit: 3 second(s)

Gwen loves Pizza. That is why she has moved into a flat located in the same house as her favorite
pizzeria. Their pizzas are so exceptionally tasty that there is simply no business opportunity for any
other pizzerias closeby. Although this sounds perfect at first, the downside is that you cannot get
any pizza whenever the pizzeria is on holiday. After having suffered during holidays too often, Gwen
decides to move again. She wants to have at least two pizzerias in her neighbourhood. Therefore,
she rates all pizzerias of the city with scores from 1 to 9 (9 is best). She only considers pizzerias
with a score of 5 or better. And she invents a way to measure the pizza pleasure of a prospective flat
at place X and a pair of pizzerias A and B: The pizza pleasure is p(X, A,B) = score(A)+score(B)

dist(X,A)+dist(X,B) ,
where dist(A, B) is the euclidean distance between A and B. The maximal pleasure of a point X and
all pairs of different A and B is called “Pizza Value”. Of course, Gwen needs your help in finding a
new flat location X, where this pizza value is maximal.

Input

The input starts with the number of test cases n (n ≤ 10). Each test case consists of one line with
the number of pizzerias m (m ≤ 2, 000) followed by m lines. Each of these lines describes a pizzeria
with its integer coordinates x, y, and its score s (−10, 000 ≤ x, y ≤ 10, 000).

Output

For each test case, output one line. This line consists of two integer values, the indices of the two
pizzerias A, B that yield the maximal Pizza Value.
If there are multiple solutions possible, output the one with the smallest indices (lexicographical
order).

Sample Input

4
3
0 0 9
4 8 9
9 2 5
3
0 0 9
4 8 5
9 2 9
3
0 0 5
4 8 9
9 2 9
3
0 0 9
4 8 8
9 2 8

Sample Output

0 1
0 2
1 2
1 2

9



Problem G

SDS, the Somewhat Different Sushi restaurant

Time Limit: 1 second(s)

Last year, a new sushi restaurant called SDS, Somewhat Different Sushi, has opened. As you might
know, some people tend to make competitions out of everything. So SDS does. Each saturday, they
arrange a two-person eating contest: winner is the person that eats the most costly sushi.
SDS has a special contest table. On this table, sushi plates are arranged in a row. The two com-
petitors alternate in choosing a sushi plate to eat next. But they are only allowed to choose the
leftmost or the rightmost plate of the sushi in the row. Both know the price tags of the individual
sushi plates and both try to eat plates that in total sum up to the maximal price. SDS only charges
the difference between the total values eaten by each contestant. The loser has to pay the bill.
My good friend Gerhard is well known for being a gourmet on the one side and eating as much food
as possible on the other side. I will compete against him in this eating contest. Please help me to
compute which order of plate selection is optimal for winning this contest. Of course, Gerhard – as
a gourmet – selects the optimal sushi, as well. Knowing this fact, he is so generous to let me start
the competition. If at some point during the contest it does not matter, we both choose the leftmost
plate from the sushi row. There is never more sushi on the table than we both can eat.

Input

The first line holds the number of test cases T (0 < T < 20). Each test case is given in two lines.
The first line specifies the number of sushi plates S (1 < S < 1000) lined up on the contest table.
For a row of sushi plates (left to right), the second line gives the price Pi of each sushi plate in Cent
(0 < Pi < 2000), separated by single spaces.

Output

For each testcase, output two lines. First, print the amount that SDS charges for this eating contest
(positive, if I won — negative, if Gerhard won the contest). Tell me in the second line, from which
end of the row the plates are choosen (L for the left side, R for the right side).

Sample Input

5
2
10 20
2
20 10
3
50 10 10
5
3 40 2 4 8
10
99 11 88 77 44 55 66 100 33 22

Sample Output

10
RL
10
LL
50
LLL
-31
LLRRL
89
LRLLLLLLLL

10



Problem H

The Last Meal before a regional contest

Time Limit: 1 second(s)

Every year, several groups of programmers face a common problem: after having arrived at the city
that hosts the regional ICPC-contest they need to find a place to eat. This is not as easy as it
sounds as there are usually several restaurants in the vicinity but none is the obvious best option.
The fact that different members of a group have different preferences makes it even worse. Some want
vegeterian food, some want it cheap, some want it to be typical for the country they are in. . . Finding
the option with the fewest disadvantages is not very easy. So they want you to write a program to
do it for them. Your program also has to be flexible enough to allow for adding and removing of
ranking criteria.

Input

The input starts with a line that holds the number t (1 ≤ t ≤ 200), the number of test cases. Each
test case starts with a line containing n, m and k (2 ≤ n ≤ 10, 2 ≤ m ≤ 20, 1 ≤ k ≤ 5). n is the
number of members of the group, m is the number of restaurants among which you have to find the
optimum, and k is the number of features (e.g. availability of vegetarian food, price, or proximity)
that are considered. The next n lines describe the preferences of each of the n group members by
giving k values per line. These values can be 0, if this feature is not important at all to this member,
1 if it is of normal importance to this member, and 2 if it is very important and thus counted twice.
Each test case ends with m lines describing the restaurants. Each such line again contains k values,
followed by the name of the restaurant separated by a space. The values range from 1 to 5 with 5
being the best rating, 1 being the worst rating. Restaurant names consist only of small letters (a-z).
They contain at most 30 characters and names are unique per test case.

Output

For each test case, output the names of the restaurants sorted by decreasing overall rating as follows:
For each group member, the rating of the restaurant is the sum of all the ratings of the restaurant
(counting the very important ones twice and leaving out the unimportant ones). For fairness reasons,
this sum is divided by the sum of the member’s preferences (and if it is all zero, it stays zero). The
restaurant’s total rating is the sum of all group member ratings. Print the names of the restaurants
sorted by this overall rating. If two restaurants have the same overall rating, sort them alphabetically.
Print an empty line between the outputs of different test cases.
(Sample Input and Output are provided on the next page.)

11



Sample Input

3
2 2 1
1
2
2 restauranta
5 restaurantb
3 3 3
1 2 0
0 1 2
2 0 1
5 5 5 thebest
4 3 4 aboveaveragefood
2 5 4 programmersrestaurant
2 3 2
1 2
1 0
3 5 bvdrfgxcdzwutpggkvnpqgtbkwyqmn
5 1 yqhiltiihztmnoeqilmitlhgeygghw
4 3 nbmxjkscrfkjfcfvndfldkwfmnvyqc

Sample Output

restaurantb
restauranta

thebest
aboveaveragefood
programmersrestaurant

bvdrfgxcdzwutpggkvnpqgtbkwyqmn
nbmxjkscrfkjfcfvndfldkwfmnvyqc
yqhiltiihztmnoeqilmitlhgeygghw

12



Problem I

The maximal munch

Time Limit: 1 second(s)

Gerard is a student that really enjoys eating. Gerard enjoys it so much that he often drives his fellow
students nuts because he needs so much time in the cafeteria while they already want to leave for
the lecture hall.
Gerard is not really picky about what he eats. But instead, the order in which he eats certain types
of food matters a lot. For example, Gerard likes to begin with starters, followed by the main dish,
and at the end the dessert. Therefore, for each day Gerard has a list that specifies in what order he
can eat certain types of food. He does not necessarily eat all of them. But if he does eat n types
of food, these have to be the first n items from the list, in exactly the order specified there. If he
finishes pauses eating, he has to start over with the first item on the list. It does not matter whether
he was through the list or not.

On weekends, Gerard usually visits some of his friends that really enjoy cooking. They will cook
many varieties of food that he can eat if he wants to. His friends have other guests as well. So
Gerard can skip some dishes if he needs a break or if that type of food does not suit his pattern. But
Gerard has to restart on his list if he skips a dish. Otherwise he can eat as much food as he wants
to as long as it fits to his list. Each time he finishes eating and begins with the first item on his list,
Gerard needs a short break of at least one meal before he can start over. He needs this break so the
food eaten can settle, therefore not for the very first time he starts eating.
Gerard always tries to eat as much food at those weekend parties as possible without breaking any
of his rules. He asks you to write a program that gives the maximum number of dishes he can eat,
given his list and the chefs’ menu sequence.

Input

The first line contains the number of test cases that follow (at most 100).
Each test case starts with a line with two numbers g and c (0 < g < 100; 0 < c < 10, 000). This line
will be followed by a line with g integers separated by spaces. These numbers specify the order in
which Gerard will eat food today. The final line of a testcase holds c integers separated by spaces.
These numbers specify the order in which food is cooked today.

Output

For each test case, output one line with the maximum number of food types Gerard can eat without
breaking any of his rules.

Sample Input

3
2 3
0 1
3 0 1
2 3
1 0
2 2 2
3 5
1 2 3
1 2 3 1 2

Sample Output

2
0
4

13



Problem J

Wait to be seated

Time Limit: 2 second(s)

Whenever a new resident arrives at the “Apartment Complex of Mayhem” (ACM), all the people
living there celebrate this arrival with a dinner at Sushi Deli. Sushi Deli is famous for the best sushi
in the city. If you ever come to San Diego be sure to try it!
Since many people know about that fact, there is always a long line in front of the place. To handle
the masses of people, there is a list where each group can put one name and the number of people
in the party. The restaurant has tables in different sizes. The groups will be seated according to the
following rules:

• If a table gets free, the first waiting group that fits exactly to this table will be seated. If there
is no such group, we take the first waiting group which is one person smaller than the table
and so on.

• There is one exception to the rule above: We do not want a party to wait much more than 30
minutes. Thus, if a group waited already more than 30 minutes they will be seated to the next
free table that is big enough. If two or more groups waited for more than 30 minutes, the one
fitting best to the table will be seated. If two parties have the same size the free table will be
assigned to the first on the list.

• If you have several tables available to seat a group, the party will be seated to the smallest yet
fitting table.

• The seating of a group takes no time. Hence a group could be immediately seated in the
moment of list entry.

After you have arrived at the Sushi Deli and have put your name on the list you want to find out
your estimated waiting time. Is it enough time for a coffee in the Cafe on the other side of the street?
From former visits you know that a party of two people usually stays for 20 minutes, a party of
three for 25 and all bigger parties for 30 minutes in the restaurant after being seated. If I give you
the waiting list of all entries from the opening of the restaurant this evening as well as a list of the
tables, can you tell me after how much time I will be seated?
Note: Group and table sizes are 2 to 8 people. There will always be a table big enough for the
biggest party given in the input. Your party is the last on the given list. The restaurant closes at
midnight.

Input

The first line contains the number of test cases (up to ten) that are separated by blank line. Each
test case starts with the number of tables t (t < 100) followed by t values that specify the number
of seats per table. Then follows the number of parties as well as one line per party in the following
form: Time of entry in the list (hhmm format in 24 hour notation), number of people in a party and
one name without spaces. There are no entries at the same time. The list is sorted in chronological
order.

Output

Output the estimated waiting time in minutes for being seated. If this would be at or after midnight,
output “No sushi today.” instead.
(Sample Input and Output are provided on the next page.)

14



Sample Input

4
1 4
5
1900 3 Steve
1920 3 Chris
1930 3 Luis
1950 3 Daniel
2010 4 Awesomealmostnowaiting

1 4
5
1900 3 Steve
1920 3 Chris
1930 3 Luis
1940 3 Daniel
2010 4 WouldbeperfectbutDanielwaitedmorethan30min

1 6
4
0100 6 A
0110 2 B
0120 6 C
0130 6 D

2 2 4
3
2340 4 A
2350 2 B
2351 3 C

Sample Output

5
30
50
No sushi today.

15



Problem K

Waiters’ Dance

Time Limit: 3 second(s)

Anna Hamilton is a wedding planer. She loves planing, coordinating, and directing these meaningful
events. But her favourite part of the job is to organize the festive dinner in the evening. Lavish
decorations fill the room where delicious food is served by well–trained waiters. Anna usually spends a
lot of time thinking about the waiters and the tables they are serving. Actually she spents very much,
too much time thinking about this problem. She usually tries to lay out all possible combinations of
waiters and tables.
So let’s assume she has to organize a small wedding where only four tables are necessary. The tables
are internally labelled the blue rhomb table, the red round table, the green triangular table, and the
yellow quadratic table. The parents of the bride can only afford two waiters. Mrs. Hamilton now
draws the eleven possibilities of how two undistinguishable waiters can serve the four coloured tables.
The result looks like this:

There are quite a number of constraints: Each waiter is assigned a certain number of tables, at least
one. A waiter serves the assigned tables in a cycle. The starting point of the cycle does not matter.
But the direction the waiter takes between the tables is important. This can be seen in the above
figure. Whenever one of the two waiters has only one assigned table, there are two possible cycles
in which the other waiter can work on the remaining three tables.
Drawing all possible combinations and cycles might be easy for four tables and two waiters but what
happens with bigger weddings? Your task is to calculate the number of combinations for a given
number of waiters and tables.

Input

First the number of test cases is given. Each test case is given in a single line and consists of the
number of tables and the number of waiters. There are at least one table and one waiter. The
number of waiters never exceeds the number of tables. At most 100 tables are served.

Output

Output the number of possibilities of how the waiters can serve the tables. Use a new line for each
test case.
(Sample Input and Output are provided on the next page.)

16



Sample Input

8
1 1
2 1
2 2
3 1
3 2
3 3
4 2
9 3

Sample Output

1
1
1
2
3
1
11
118124

17


