
FAU-Programmierwettbewerb 2005

25. Juni 2005

Problemübersicht:

Nr. Name Seite

A Happy Countries 2
B Just Link It 3
C A Graph Problem 4
D Points 5
E Polynimial Marriage 7
F Protein Similarity 8
G Slow Sort 9
H The Snake Game 11
I Thuringian Machine 12

Viel Spaß beim Programmieren!

Die Dokumentation des Java-API ist unter
http://www2.informatik.uni-erlangen.de/Dokumentation/j2sdk-1.4.2/api/

einzusehen.

Die Dokumentation der Standard Template Library ist unter
http://www2.informatik.uni-erlangen.de/Dokumentation/STL/ zu finden.

Verwendete Compiler und ihre Optionen:
C: gcc -Wall -lm, Version: 3.3.3
C++: g++ -Wall, Version: 3.3.3

Java: ????

1

Problem A

Happy Countries

Author: Dominik Scheder

Time Limit – 2 seconds

Back in his first year of highschool, young Dominik was very interested in Geography. In his first
lesson, he learned that the Soviet Union - yes, it still existed back then - was by far the largest
country on earth. But, as a matter of fact, its population is much smaller than China’s, which is the
country with the biggest population. ”The Soviet Union can’t be a happy country”, young Dominik
thought. ”All those huge plains with no one living there...”, but he was also telling himself ”China
can’t be happy either! So many people but far too little space for them”. So he thought in order to
be happy, a country should have the same rank if measured by population as if measured by area.
For example, the United States is a happy country: it’s third by both area and population! Your
task is, given a list of countries that shows their area and their population, to determine all happy
countries.

Input

The input consists of several testcases. Each testcase begins with a line containing a single integer,
1 ≤ n ≤ 1000, the number of countries in this testcase. This is followed by n pairs of lines, the first
of each containing the name of a country, the second the area. This list is followed by a blank line
and by a list describing, in exactly the same format as above, the population of the countries. Each
testcase is followed by a blank line. The input is ended by a testcase where n = 0, which should
not be processed. You can assume that the set of names in the first list and the set of names in the
second list are identical. Also, all numbers in the input will be within the range of 32-bit int, and
there are no two different countries with the same size of area or the same number of people.

Output

For each testcase, output the names of the happy countries, in descending order, one name per line.
If there is no happy country, write ”There is no happy country!”. After each testcase, output a blank
line.

Sample Input

3

United States of America

100

People’s Republic of China

95

Brazil

80

People’s Republic of China

1000

Brazil

250

United States of America

300

Sample Output

Brazil

2

Problem B

Just Link It

Author: Christian Riess

Time Limit – 5 seconds

The usual process of creating binary code involves compiling and linking. Compiling only means to
translate code from a source language to a destination language. In our case this means that machine
executable code is created out of our programming language. The second step in creating a machine
executable program is to link this executable code to external libraries. Since linking is a separate
work step, there often exists a linker in addition to the compiler. For us - as we are old fashioned
Linux hackers - the linker of our choice is the GNU linker, invoked by the command ”ld”.

The pesky part of that linker are the little details: If we want to link our program P against a
library A and a library B, but library B also depends on library A, we have to take care in which
order we list the libraries A and B.

Example: ”ln -lA -lB P” would link our program P correctly, because B depends on A and
A is already included when B is treated. But ”ln -lB -lA P” would fail, because at the time B is
processed, it still contains unknown symbols from A, which cannot be resolved. Circular dependencies
can be resolved by repeating the entries:

”ln -lB -lA -lB P” would also work in our previous example, and so could these be resolved. Since
it is quite annoying to work this out with more than just two libraries, it is your job - given the library
dependencies - to print the correct linker command line for that problem. Since circular dependencies
are more complicated, we simply want an error message, if you detect a circular dependency. Print
those include libraries at first which depend on no other libraries in alphabetical order, afterwards
those which depend on nothing but the already printed include libraries (again in alphabetical order),
and so on.

Input

The input consists of the number of test cases c, 0 < c ≤ 1000. Each test case starts with a line
containing the program name, the number of involved libraries l, 0 ≤ l ≤ 26, and the number of
dependencies d, 0 ≤ d ≤ 1000. You can assume that the names of the libraries correspond to the
uppercase letters of the Latin alphabet, starting with ”A”, so the existence of three libraries means
there are the libraries ”A”, ”B” and ”C”. This line is followed by d lines describing one dependency,
given by two letters separated by a space, where the first one denotes the library that is dependent
on the second. You can assume that the program name will not be longer than 20 characters. There
won’t be a reflexive dependency of the kind ”A” depends on ”A”, and there are only dependencies
between libraries given that occur in the current linking process, i.e. if there are only two libraries, no
dependency with a library ”C” will occur. The lines describing the dependencies are not necessarily
unique, but there are never more than 1000 lines of dependencies per test case.

Output

For each test case your program should print the linker command line for the given problem, in the
order as described above. Every linker command line should be written in a separate line. If there is
a circular dependency, output a single line containing ”error: circular dependency!”

Sample Input

3

icpc_solution.o 1 0

hal_core.o 3 2

A B

C B

everyday_code.o 2 2

A B

B A

Sample Output

ln -lA icpc_solution.o

ln -lB -lA -lC hal_core.o

error: circular dependency!

3

Problem C

A graph problem

Author: Der General

Time Limit – 2 seconds

Given an undirected graph of the following form with n nodes, 1 ≤ n ≤ 76:

1 2 n−1 n

Your task is to calculate the number of subsets of nodes of the graph with the following properties:

• no nodes in the subset should be connected

• it shouldn’t be possible to add further nodes to the subset without violating the first condition

For a graph with 5 nodes the number of subsets which fulfill the above conditions is 4. The subsets
are {1, 3, 5}, {2, 4}, {2, 5}, {1, 4}.

Input

The input will consist of a sequence of numbers n, 1 ≤ n ≤ 76. Each number will be on a separate
line. The input will be terminated by EOF.

Output

Output the number of subsets as described above on a single line. The number of all subsets will be
less than 231.

Sample Input

1

2

3

4

5

30

Sample Output

1

2

2

3

4

4410

4

Problem D

Points

Author: Tilmann Spiegelhauer

Time Limit – 10 seconds

In this problem you will be given a set of points in the Euclidian plane. The number of points in
the set will never exceed 100000. The coordinates of these points will be integer coordinates and will
have an absolute value smaller than or equal to 10000. There will be no identical points in the first
set. Then you will be given a second set of points. The points in the second have integer coordinates,
too. For each point in the second set you will have to determine whether it is contained in a triangle
spanned by three points in the first set. A point on the edge of a triangle is considered to be ”inside”
the triangle. In the following example the points p1, p2, p3, p4 belong to the first set. The points r and
s belong to the second set. The point r isn’t contained in any triangle spanned by three points of the
first set. The point s is contained in two triangles. For example, the triangle spanned by p2, p3, p4.

r

s
p

p

p

p

3

1

2

4

Input

You will be given several testcases. A testcases consists of the number of points p, 3 ≤ p ≤ 100000
in the first set. It is followed by p pairs of numbers, each describing a point of the first set, the first
number of a pair denoting the x-coordinate of the point, the second the y-coordinate. Each pair is
on a seperate line. There may be colinear points in the first set. The next number in the input gives
you the number of points r in the second set. It is followed by r pairs of numbers, each describing a
point, each on a separate line. The first number of a pair being the x-coordinate, the second number
being the y-coordinate of the point. All coordinates in the input will be integer coordinates.

Output

For each point in the second set, output if the point lies in a triangle spanned by three points of the
first set. If the point lies inside a triangle output inside otherwise output outside.

5

Sample Input

4

0 0

4 4

0 4

4 0

6

2 2

4 4

1 1

0 2

0 10

10 0

Sample Output

inside

inside

inside

inside

outside

outside

6

Problem E

Polynomial Marriage

Author: Tilmann Spiegelhauer

Time Limit – 2 seconds

You might know the mathematical creatures which go by the name polynomials. In this case you
will have to deal with a certain tribe of them, the polynomials of the tribe Z[X]. Two polynomials
of this tribe can only marry, if the male polynomial divides the female polynomial without leaving
a remainder. Given a male polynomial and a female polynomial your task is to decide if they can
marry. The leading coefficient of the male polynomial will always be 1 or -1, so the result of the
division will always be in Z[X].

Input

There will be an even number of lines in the input. There will be a polynomial in each line. The
polynomials on the first, third line and on so on and so forth will be female polynomials. The other
polynomials will be male polynomials. The description of a polynomial will consist of the degree
d, 1 ≤ d ≤ 10, followed by the d + 1 coefficients in decreasing order, the first coefficient will be the
leading coefficient. The coefficients of the result will always fit into an int. A coefficients’ absolute
value will be at most 10. A polynomial will have at least degree one. The input will be terminated
by EOF.

Output

Output the remainder of the division for each pair of polynomials on a line in the format specified
in the Sample Output. Output a 0 for the zero polynomial. In all other cases omit monomials with
the coefficient zero. Do not print the coefficient 1 for monomials of degree 1 or greater.

Sample Input

1 2 0

1 -1 0

3 1 1 0 -1

2 1 0 0

3 1 1 0 2

2 1 0 0

3 1 1 -1 0

2 -1 0 0

3 1 1 1 0

2 -1 0 0

3 1 1 0 1

3 1 0 0 0

10 -2 -1 -3 0 -1 -3 -2 -1 -1 1 -3

5 1 -3 0 2 -3 -1

Sample Output

0

-1

2

-x^1

x^1

x^2 + 1

-1652x^4 + 165x^3 + 478x^2 - 1903x^1 - 572

7

Problem F

Protein similarity

Author: Thorsten Meinl

Time Limit – 10 seconds

Proteins are responsible for almost everything that goes on in our body. All proteins are built up
of only twenty amino acids which are chained together in countless variations. It is common to
abbreviate the amino acids by a three letter code, e.g. SER for Serin, LEU for Leucin, etc. One of
the interesting tasks in bioinformatics is to determine the similarity of two proteins. One way of
doing so, is to align the proteins and compute a score for the alignment. Take e.g. the two amino
acid sequences SER SER CYS ASP LEU SER CYS and SER CYS CYS ASP ASP LEU CYS SER ASP ASP

CYS. One possible alignment is

SER CYS CYS ASP ASP LEU CYS SER ASP ASP CYS

| | | | | |

SER SER CYS ___ ASP LEU ___ SER ___ ___ CYS

As you can see, there are amino acids that match in both sequences (e.g. SER at the beginning),
amino acids that do not match (CYS and SER at the second position) and gaps in either of the
sequences (indicated by). Each of the three situations gets a distinct score value. Suppose a
match gets a score of 2, a mismatch a score of -1 and a gap a score of -2 (also called gap penalty) then
the overall score of the alignment above is 3. The higher the score the more similar the two sequences
are. Of course there is more than just one alignment for both sequences resulting in different scores.
Your task will be to find out the score for the best alignment. Please note that in the final alignment
both the shorter and the longer sequence may be filled up with gaps.

Input

The input consists of a bunch of test cases. Each test case is built up of three lines. In the first line the
three scores are given as integer values separated by a space (the match score is always non-negative,
the other two are always non-positive). The first value is the match score, the second the mismatch
score and the third the gap penalty. Then the two proteins follow in the next two lines. They are
given as the chain of the three letter codes of their amino acids. There are a maximum of twenty
different amino acids. The last test case is terminated by EOF.

The sequences will not be longer than 10.000 amino acids.

Output

Your program should output the maximal score for the alignment of each sequence pair as an integer
value, each in its own line.

Sample Input

1 0 0

SERCYSCYSASPASPLEUCYSSERASPASPCYS

SERSERCYSASPLEUSERCYS

2 -1 -2

SERCYSCYSASPASPLEUCYSSERASPASPCYS

SERSERCYSASPLEUSERCYS

Sample Output

6

3

8

Problem G

Slow Sort

Author: Christian Riess

Time Limit – 2 seconds

Part of the program of the university’s foundation course is to study sorting algorithms. We all know
heapsort as a powerful ”in situ” algorithm, and we know that quicksort is the striking solution for
average case input. We also appreciate bubblesort for its pleasant analytical structure, even if it is
not very efficient compared to the ones previously mentioned.

An even slower method of sorting than bubblesort is slowsort. Slowsort is very, very slow even
compared to the rather slow bubblesort. It works the following way:

while (not_sorted(current_permut))

current_permut = get_next_permutation()

where get next permutation() simply creates one permutation after another from the input string,
according to following rule:

If the initial state is 1 2 3 4 then the consecutive return values of get next permutation() are

1 2 4 3

1 3 2 4

1 3 4 2

1 4 2 3

1 4 3 2

2 1 3 4

2 1 4 3

2 3 1 4

2 3 4 1

2 4 1 3

2 4 3 1

3 1 2 4

3 1 4 2

3 2 1 4

3 2 4 1

3 4 1 2

3 4 2 1

4 1 2 3

4 1 3 2

4 2 1 3

4 2 3 1

4 3 1 2

4 3 2 1

Since for one of these permutations of the input should be correctly sorted (this means all elements
are in increasing order), the test not sorted(current permut) fails sometime and we know which
permutation to apply for sorting the input. Now before we are running some tests on our algorithm,
we are interested in the number of loops the algorithm will take. It is your job to calculate this
number.

Input

The input consists of the number of test cases c, 1 ≤ c ≤ 100. Each test case consists of one line
containing a number n, 1 ≤ n ≤ 12, followed by n numbers which form a permutation of the numbers
k, 1 ≤ k ≤ n. All numbers in one line are divided by a single space. The given permutation represents
the state in which the input is sorted, and it is yours to calculate the number of steps there from
the initial configuration, which consist simply of n increasing numbers. In a situation as given in
the example above, the permutation 1 3 2 4 would cause the loop to execute twice, since it is the
second permutation after the initial state.

9

Output

For each test case print one line containing the number of iterations until the input is sorted. You
can assume that this number will always fit into an integer.

Sample Input

2

4 1 4 2 3

3 1 3 2

Sample Output

4

1

”Computers these days are trying to bury us with useless information.” I grumbled. ”I
think that they have entirely too much time on their hands and are using it to make us
miserable. I’m trying to think of some way to keep them busy so that they will leave us
humans alone.” (David Condic)

For references, please visit:
http://portal.acm.org/citation.cfm?id=101139.101144 ”Junk facts and the Slowsort”
http://www.stefan-baur.de/cs.algo.slowsort.html ”SlowSort implementation in Prolog”

10

Problem H

The snake game

Author: Ingrid Fischer

Time Limit – 2 seconds

There is a new toddler game on the market, that parents are buying like crazy. It is a cute little card
game. You start with a designated card and replace one card by two other cards until you have a
loooooooooooooong snake your toddler likes. To have more fun you can make up the rules how cards
can be replaced by yourself, the only restriction is, that one card has to be substituted by two cards.
Otherwise your toddler is disappointed because the snake is not growing. Assume the starting card
is called Snake and you have the following snake replacement rules:

Snake replaced with Head Tail

Head replaced with Head Body

Body replaced with Body Body

Then the following snakes can be built:

Head Body Body Body Body Tail

Head Body Body Body Tail

Head Body Body Tail

Head Body Tail

Head Tail

Of course even longer snakes are possible. Your task is now to decide whether a set of given
snakes can be built from a set of snake rules. To make it for grown-ups like you more interesting,
you should give the number of possibilities to construct a snake from the rules.

Input

The input consists of two parts. First the rules are given and second snakes are given. The rules part
starts with an integer in the first line saying how many rules are following. Each rule is written in a
separate line. A rule starts with the name of the card to be replaced followed by the names of the
two cards it can be replaced with. One card can be only replaced by two other cards. In the line
following the rule definitions an integer is given with the number of snakes possibly built from the
rules. Each snake is written in one line.

Output

For each possible snake given in the input it must be decided whether this snake can be built with
the help of the given rules. If a snake can be accepted the output is the number of ways to construct
the snake, otherwise it is ¡i¿No¡/i¿. Each decision is printed in a new line.

Sample Input

3

Snake Head Tail

Head Head Body

Body Body Body

6

Head Body Wing Tail

Head Body Body Body

Head Body Body Tail

Body Head Body Tail

Head Body Tail

Head Tail

Sample Output

No

No

2

No

1

1

11

Problem I

The Thuringian Machine

Author: Stefan Büttcher

Time Limit – 10 seconds

The Thuringian Machine is very similar to the well-known Turing Machine. One of the major dif-
ferences is that – due to the lack of military funding in the post-cold-war world – the Thuringian
Machine does not have an infinite tape. Instead, its tape consists of 20 cells that are arranged in
a circular fashion. So, whenever the read/write head is above cell 20 and receives the command to
move to the right, it goes to cell 1. Analogously, when it is above cell 1 and receives the command
to move to the left, its new position is above cell 20. While this limitation makes the Thuringian
Machine computationally incomplete :(, it allows you to solve the Halting Problem :)

a a a b a a ab a a b a a a

1 2 3 4 5 6 7 14 15 16 17 18 19 20

At every point in time, the configuration of the Thuringian Machine is defined by the contents of its
tape T1 . . . T20 ∈ {a, b}20, the current head position h (index of the cell above which the read/write
head is), and an integer number s - the state of the Thuringian Machine.

A program for the Thuringian Machine is a finite number of lines that define a partial function
mapping from (machine state, cell content) pairs to (machine state, cell content, head movement)
triples. For instance, the line

1 a 2 b right

says that when the TM is in state 1 and reads an ”a” from the current tape cell, it writes an ”b”
to the current cell, switches to state 2 and moves the tape head one cell to the right. Similarly, the
line

7 b 7 b left

tells the TM to leave the cell content untouched, when it is in state 7 and reads a ”b”, and to
move the tape head one cell to the left. Finally,

3 b 1 a stay

says that when the Thuringian Machine is in state 3 and reads a ”b”, it writes an ”a”, switches
to state 1, and does not move the tape head.

At the beginning, the TM is always in state 1, and the tape head is above cell 1. State 0 is a
special state: When the Thuringian Machine enters state 0 (either explictly or implicitly), it stops
the program execution. Whenever the machine encounters a configuration for which there is no valid
rule, it enters state 0 and terminates (this is the implicit case).

Your task is to write a program that, given the description of a Thuringian Machine and the tape
content, determines whether the machine terminates on the given tape. In other words, you have to
solve the Thuringian Halting Problem.

Input

The first input line contains an integer n, the number of test cases to follow. Each test case consists
of the description of a TM program and the initial tape content, as shown in the Sample Input
below. It starts with two integers s and r (the number of different states (not including the halting
state) and the number of rules (transitions), respectively). The following r lines each contain a single
transition rule. The (r + 1)-th line contains the initial content of the TM’s tape. It is guaranteed
that each Thuringian Machine is deterministic (i.e., at most one transition for every (machine state,
cell content) pair) and has no more than 40 different states.

Output

For each test case, print one line, containing either the string ”Terminates.” or ”Does not terminate.”,
depending on whether the TM halts on the given input string.

12

Sample Input

3

2 3

1 a 2 a right

1 b 2 a right

2 b 2 b right

bbbbbbbbbbbbbbbbbbbb

1 2

1 a 1 a right

1 b 1 b right

abababababababababab

5 8

1 a 2 a right

1 b 2 b right

2 a 2 a right

2 b 3 b left

3 a 4 b left

4 a 4 a left

4 b 5 b right

5 a 2 b right

baaaaaaaaaaaaaaaaaab

Sample Output

Terminates.

Does not terminate.

Terminates.

13

