
The German Collegiate Programming Contest 2016

The German Collegiate Programming Contest
2016

The GCPC 2016 Jury

04.06.2016

The German Collegiate Programming Contest 2016

Judges’ Solutions
Problem Min LOC Max LOC

Dwarves 36 113

Correcting Cheeseburgers 43 145

Knapsack in a Globalized World 19 111

Matrix Cypher 22 340

Model Railroad 47 127

One-Way Roads 51 557

Formula 17 67

Celestial Map 27 148

Common Knowledge 1 49

Selling CPUs 13 64

Routing 40 120

Maze 34 91

total 350 1932

The German Collegiate Programming Contest 2016

Formula

G: Formula - Sample Solution
Easiest problem in the set.

Problem
Given a triangle ∆abc and a number r .
How much differs the incircle radius of ∆abc from rm?

Solution

I You are given formulas to compute
I the incircle radius, given the area
I the area, given the side lengths

I Rearranging the formulas leads to

r∆abc =

√
4a2b2 − (a2 + b2 − c2)2

2(a + b + c)

I The answer is r∆abc−rm
rm

The German Collegiate Programming Contest 2016

Common Knowledge

I: Common Knowledge - Sample Solution

Problem
For two segment displays of length n where on one both players
see the top half and on the other one player sees the top and one
the bottom half, how many numbers do they both know?

Solution

I Digits recognizable by seeing the top half: 0,1,4,7.

I Digits recognizably by seeing the bottom half: 0,2,4.

I If both see the top half, there are four possible digits, thus 4n

numbers

I Otherwise there are only two possible digits (0 and 4), thus 2n

numbers.

I In total, there are 4n · 2n = 8n numbers which is the solution.

The German Collegiate Programming Contest 2016

Dwarves

A: Dwarves - Sample Solution

Problem
Given various statements about the relative heights of the dwarves,
decide whether there is a contradiction in their statements.

Solution

I Read input as directed graph with an edge from the smaller to
the larger dwarf.

I Check if the graph is acyclic (e.g. with DFS).

The German Collegiate Programming Contest 2016

Matrix Cypher

D: Matrix Cypher - Sample Solution

Problem
Decode a message (represented as bitstring) that has been
encoded by repeatedly multiplying different matrixes onto the
identity matrix depending on zeroes and ones.

Solution

I Note that the matrix for the bit 0 corresponds to adding first
row to the second. If the bit is 1, we add the second row to
the first.

I For decoding simply check which row is greater and undo the
action by subtraction. This gives you the last bit of the
message. Repeat this, until we have the identitiy matrix.

The German Collegiate Programming Contest 2016

Selling CPUs

J: Selling CPUs - Sample Solution

Problem
You have c identical objects and there are m ordered merchants.
Each merchant i each has his own price pi

j for each amount j of
objects you can sell him.
How much money can you make by selling your objects to the
merchants?

Insights

I If m < c it might not be optimal to sell all objects

I To determine how much to sell to merchant j it is only
relevant how much you sold to the merchants i < j in total,
not how much you sold to the individual merchant

The German Collegiate Programming Contest 2016

Selling CPUs

J: Selling CPUs - Sample Solution

Solution

I Use Dynamic Programming over (#merchants,#CPUs sold)

max price(m, c) =

0 , if m = 0

min(max price(m − 1, c),

minck=1 max price(m − 1, c − k) + pi
k) , else

I Setting all max price(0, c) = 0, means that we don’t have to
sell all objects

I Runtime O(mc2)

The German Collegiate Programming Contest 2016

Selling CPUs

J: Selling CPUs - Sample Solution

Solution

I Use Dynamic Programming over (#merchants,#CPUs sold)

max price(m, c) =

0 , if m = 0

min(max price(m − 1, c),

minck=1 max price(m − 1, c − k) + pi
k) , else

I Setting all max price(0, c) = 0, means that we don’t have to
sell all objects

I Runtime O(mc2)

The German Collegiate Programming Contest 2016

Selling CPUs

J: Selling CPUs - Sample Solution

Solution

I Use Dynamic Programming over (#merchants,#CPUs sold)

max price(m, c) =

0 , if m = 0

min(max price(m − 1, c),

minck=1 max price(m − 1, c − k) + pi
k) , else

I Setting all max price(0, c) = 0, means that we don’t have to
sell all objects

I Runtime O(mc2)

The German Collegiate Programming Contest 2016

Model Railroad

E: Model Railroad - Sample Solution

Problem
Given a railroad network with already existing connections and
possible connections, is it possible to destroy some connections and
build others of at most the same total length such that the new
network is connected?

Solution

I Sum up the length of all existing edges.

I Run the MST algorithm of your choice.

I Output “possible” if the weight of the MST is at most the
sum of the existing edges.

The German Collegiate Programming Contest 2016

Maze

L: Maze - Sample Solution

Problem
Given a word w and a nondeterministic finite automaton A,
compute the chance that any prefix of w is accepted by A.

Solution

I Simulation/Dynamic Programming

I Store an array P[n] with probabilities for each node, starting
with 100% at the start node

I For every letter l in w :
I P ′[n] is the sum over the probability of all incoming edges.

I Probability to take edge n0
l−→ n is P[n0] ∗ 1

|out(n0,l)|

The German Collegiate Programming Contest 2016

Maze

L: Maze - Sample Solution

Example
AB

1start

100%
2

0%

3

0%

4

0%

5

0%

A

B

B

A

B

The German Collegiate Programming Contest 2016

Maze

L: Maze - Sample Solution

Example
AB

1start

0%
2

50%

3

0%

4

50%

5

0%

A

B

B

A

B

The German Collegiate Programming Contest 2016

Maze

L: Maze - Sample Solution

Example
AB

1start

0%
2

0%

3

25%

4

0%

5

75%

A

B

B

A

B

The German Collegiate Programming Contest 2016

Celestial Map

H: Celestial Map - Sample Solution

Problem
You are given multiple stars’ location and trajectory, furthermore a
plane and a distance d . For every star, decide whether it was in
the plane and had distance d to you when it sent the message
which you recieved just now.

Insight

I Compute normal of p1 and p2 to represent the plane (cross
product).

The German Collegiate Programming Contest 2016

Celestial Map

H: Celestial Map - Sample Solution

Solution

I To test whether a star is viable:
I Compute intersection of plane and star’s trajectory.
I Distance t from Bob to intersection = time it took for the

message to reach Bob.
I intersection + t· trajectory = star’s current position iff star is

viable.

I or (without computing intersections)
I If the star had distance d to Bob, it took d lightyears for the

message to arrive.
I Take stars current position (sx sy sz) and remove d · (tx ty tz).
I Check if the point we got is in plane (using the normal vector)

and has the correct distance to Bob. If this is the case the star
is viable.

The German Collegiate Programming Contest 2016

Routing

K: Routing - Sample Solution

Problem
Find a shortest path, but whether an edge can be used depends on
the last edge that was used.

1 10

2 1

3 10

4 10
1

1

The German Collegiate Programming Contest 2016

Routing

K: Routing - Sample Solution

Insights

I Consider the dual graph instead:

I Edges become nodes.

I Nodes become edges connecting edges if they can be used
together.

I The weights of the edges are the processing times of the
corresponding server.

I Add artificial nodes for the source and the target.

The German Collegiate Programming Contest 2016

Routing

K: Routing - Sample Solution

1

2

3

4

10

10

10

1 10

10

The German Collegiate Programming Contest 2016

Routing

K: Routing - Sample Solution

Solution

I Search for a shortest path on the dual graph instead.

I Use for instance Dijkstra’s Algorithm.

I The dual graph has at most n2 vertices and n3 edges.

I Running time: O(n2 log n2 + n3) = O(n3)

I Different idea: Work on the original graph, but use as Dijkstra
state not only the node and the distance, but also the last
edge you used.

The German Collegiate Programming Contest 2016

One-Way Roads

F: One-Way Roads - Sample Solution

Problem
Given an undirected graph, find a number d such that there is an
orientation of the edges where every node has in-degree of at most
d .

Solution

I For a given d we can decide whether there exists an
orientation that fulfils the constraint using maximum flow (see
next slide).

I Use binary search to find the minimal d .

The German Collegiate Programming Contest 2016

One-Way Roads

F: One-Way Roads - Sample Solution

Find an orientation

I First solution:
I Start with an arbitrary orientation ~G .
I Nodes with indegree greater than d have to flip edges.
I Nodes with smaller indegree may increase their indegree.
I Add a source with edges to all nodes v , capacity

max(0, indeg~G (v)− d ′).
I Add sink with edges to all nodes, capacity

max(0, d ′ − indeg~G (v)).

I Add edges between the nodes in reverse direction of ~G .
I A maximum flow now tells you whether you should flip an edge

(if it is used by the flow) and whether there was a solution (if
all source edges are used to full capacity).

The German Collegiate Programming Contest 2016

One-Way Roads

F: One-Way Roads - Sample Solution

Find an orientation

I Second solution:
I Compute a matching between roads and the cities they

connect.
I The graph has one node per city and one per road, as well as

source and sink.
I The source is connected to all roads with capacity 1, each road

to its endpoints with capacity 1.
I The cities are connected to the sink with capacity d .
I A maximum flow now tells you whether there is a matching of

roads to cities (if the flow is equal to the number of roads).

The German Collegiate Programming Contest 2016

Correcting Cheeseburgers

B: Correcting Cheeseburgers - Sample Solution

Problem
Given a number of up to 10 digits find the minimum number of
bit-shuffles to sort the digits in ascending order.

Idea

I Construct the graph G of possible permutations.

I There is a directed edge between permutations a and b iif
there is some shuffle such that bit-shuffle(a) = b.

The German Collegiate Programming Contest 2016

Correcting Cheeseburgers

B: Correcting Cheeseburgers - Sample Solution

Naive Solution

I BFS on graph to find minimum number of steps from starting
number s to sorted number t.

I Graph G has a manageable amount of nodes (|V | = N!).

I Each node has about N3 edges (|E | ≈ N! ∗ N3).

⇒ BFS results in TLE.

The German Collegiate Programming Contest 2016

Correcting Cheeseburgers

B: Correcting Cheeseburgers - Sample Solution

Insights

I The maximum number of steps required is at most 6. (Can be
confirmed by naive exploration in a few minutes.)

I BFS bounded by a maximum depth of 3 is fast.

I The bit-shuffle can be reversed. We can search backwards.

Solution - Bidirectional Search

I 2-depth BFS from s and 3-depth BFS with the reversed
bit-shuffle from t.

I Check for overlaps to get the minimum steps required.

I No overlap ⇒ result must be greater than 5 and combined
with our previous insight it must be 6.

The German Collegiate Programming Contest 2016

Knapsack in a Globalized World

C: Knapsack in a Globalized World - Sample Solution

Problem
Good old KNAPSACK with a twist: The size of the knapsack is
too large to fit into the memory, but every of n items can be put
multiple times into the knapsack.

Idea

I Do calculation modulo the size of an arbitrary item, let’s say
G1.

I The most crucial insight:

∃ai ∈ N≥0 : K =
∑

1≤i≤n

ai · Gi ⇔

∃ai ∈ N≥0 : K mod G1 =
∑

2≤i≤n

ai · Gi and
∑

2≤i≤n

ai · Gi ≤ K

The German Collegiate Programming Contest 2016

Knapsack in a Globalized World

C: Knapsack in a Globalized World - Sample Solution

Solution - shortest path

I Every modulo class is a node in the graph, there are G1 nodes.

I There is an edge from node i to node j , iff there is an item k
with i + Gk = j mod G1. There are at most n · G1 edges.

I The shortest path from 0 to K mod G1 must not be longer
than K .

I Dijkstra is fast enough - O (n · G1 log(n · G1)).

I We also accepted any other O
(
G 2

1 · n
)

shortest path
algorithm.

The German Collegiate Programming Contest 2016

Knapsack in a Globalized World

C: Knapsack in a Globalized World - Sample Solution

Solution - number theory

I Let Gmax be the largest item.

I Every number K greater than Gmax · Gmax is reachable iff it is
divisible by the GCD of {G1, . . . ,Gn}.

I Solve KNAPSACK normally for K <= Gmax · Gmax , do the
GCD calculations for larger numbers - results in O

(
G 2
max · n

)
.

Nota bene

I This problem is also known as Money Changing Problem
(MCP).

I It’s NP-complete.

I A pseudo-polynomial O (G1 · n) solution is known.

The German Collegiate Programming Contest 2016

Thanks

Thanks

We thank all organizers, problem setters, jury members, contest
site organizers and other helpers for their work.

Contest Director
Stefan Toman, Technische Universität München

Main Organization

Moritz Fuchs, Technische Universität München
Philipp Hoffmann, Technische Universität München
Christian Müller, Technische Universität München
Chris Pinkau, Technische Universität München

The German Collegiate Programming Contest 2016

Thanks

Thanks

Jury

Markus Blumenstock, Johannes Gutenberg-Universität Mainz
Egor Dranischnikow, Johannes Gutenberg-Universität Mainz
Moritz Fuchs, Technische Universität München
Philipp Hoffmann, Technische Universität München
Christian Müller, Technische Universität München
Martin Schuster, Universität zu Lübeck
Ben Strasser, Karlsruher Institut für Technologie
Martin Tillmann, Karlsruher Institut für Technologie
Stefan Toman, Technische Universität München

The German Collegiate Programming Contest 2016

Thanks

Thanks

Proofreaders and Testers
Michael Baer, Miriam Polzer, Tobias Werth, Paul Wild, Thorsten
Wißmann

Helpers and Coaches

Nourhene Bziouech, Doina Logofatu, Marinus Gottschau, Stefan
Jaax, Markus Mock, Alexander van Renen, Melanie Strauss

The German Collegiate Programming Contest 2016

Thanks

Thanks

Contest Site Organizers

Heiko Röglin (Bonn) Tobias Brinkjost (Dortmund)
Michael Baer (Erlangen), Daniela Novac(Erlangen), Dominik
Paulus Erlangen), Miriam Polzer (Erlangen), Tobias Polzer
(Erlangen), Paul Wild (Erlangen), Thorsten Wißmann (Erlangen),
Bakhodir Ashirmatov (Göttingen), Ben Strasser (Karlsruhe),
Martin Tillmann (Karlsruhe), Max Bannach (Lübeck), Tim Kunold
(Lübeck), Maciej Liskiewicz (Lübeck), Martin Schuster
(Lübeck),Markus Blumenstock (Mainz), Egor Dranischnikow
(Mainz), Jochen Saalfeld (Osnabrück), Julian Pätzold
(Osnabrück), Tobias Friedrich (Potsdam), Christoph Kessler
(Potsdam), Christian Baldus (Saarland), Julian Baldus (Saarland),
Gregor Behnke (Ulm), Marianus Ifland (Würzburg)

The German Collegiate Programming Contest 2016

Thanks

Thanks

	Formula
	Common Knowledge
	Dwarves
	Matrix Cypher
	Selling CPUs
	Model Railroad
	Maze
	Celestial Map
	Routing
	One-Way Roads
	Correcting Cheeseburgers
	Knapsack in a Globalized World
	Thanks

