GCPC 2015
 Presentation of solutions

Statistics

A - Greece - Statistics

Statistics: 21 submissions, 2 accepted

A - Greece

Problem

- Start in Athens (0), visit all sites and return to Athens within a given time
- Taxi ticket as a one-time short cut
\Rightarrow Essentially TSP, but you only have to visit P nodes, all other are optional

A - Greece

Solution without taxi ticket

- Insight 1: You can always take the shortest path between any two sites $p(a, b)$
- Insight 2: TSP must only be calculated on P nodes connected by edges with $w(a, b)=|p(a, b)|$

A - Greece

Solution without taxi ticket

- Insight 1: You can always take the shortest path between any two sites $p(a, b)$
- Insight 2: TSP must only be calculated on P nodes connected by edges with $w(a, b)=|p(a, b)|$

Implementation

- Compute shortest paths by P-times Dijkstra: $\mathcal{O}(P \cdot N \log N)$
- Run 2^{P} DP solution for TSP - P ! will be to slow
- Add extra dimension to the DP to account for the taxi ticket
- Compare the two values with $G-\sum t_{i}$

B - Bounty Hunter II - Statistics

Statistics: 28 submissions, 1 accepted

B - Bounty Hunter II

Problem

Given a DAG with N nodes find the minimum number of vertex-disjoint paths to cover each vertex.

B - Bounty Hunter II

Solution

Construct bipartite graph from DAG. Set O contains all vertices with their outgoing edges, set I contains all vertices with their incoming edges.

B - Bounty Hunter II

Solution

- Compute maximal matching M on bipartite graph with augmenting paths or similar algorithm.

B - Bounty Hunter II

Solution

- Compute maximal matching M on bipartite graph with augmenting paths or similar algorithm.
- Idea: Start with N zero length paths in every node.

B - Bounty Hunter II

Solution

- Compute maximal matching M on bipartite graph with augmenting paths or similar algorithm.
- Idea: Start with N zero length paths in every node. Edge $\left(a_{O}, b_{l}\right) \in M \hat{=}$ Path arriving at a continues to b

B - Bounty Hunter II

Solution

- Compute maximal matching M on bipartite graph with augmenting paths or similar algorithm.
- Idea: Start with N zero length paths in every node. Edge $\left(a_{O}, b_{l}\right) \in M \hat{=}$ Path arriving at a continues to b
- Number of necessary paths is then $N-|M|$.

C - Cake - Statistics

Statistics: 46 submissions, 5 accepted

C - Cake

Input

Given a convex polygon (the surface of a cake), a ratio a of allowed weight of the cake and an algorithm to reduce weight.

Weight reduction algorithm

- Choose a real number $s \geq 2$
- For each vertex
- for both incident edges mark where $1 / s$ of the edge's length is
- cut directly between the two markings and remove the part with the current vertex

Problem

Compute the maximal s such that the area of the remaining polygon has proportion less or equal than a.

C - Cake

Weight reduction algorithm

- $s:=3$
- for each vertex
- for both incident edges mark where $1 / s$ of the edge's length is
- cut directly between the two markings and remove the part with the current vertex

C - Cake

Weight reduction algorithm

- $s:=3$
- for each vertex
- for both incident edges mark where $1 / s$ of the edge's length is
- cut directly between the two markings and remove the part with the current vertex

C - Cake

Weight reduction algorithm

- $s:=3$
- for each vertex
- for both incident edges mark where $1 / s$ of the edge's length is
- cut directly between the two markings and remove the part with the current vertex

C - Cake

Input

Given a convex polygon (the surface of a cake), a ratio a of allowed weight of the cake and an algorithm to reduce weight.

Problem

Compute the maximal s such that the area of the remaining polygon has proportion less or equal than a.

(Possible) Solution

- Fix parameter s

C - Cake

Input

Given a convex polygon (the surface of a cake), a ratio a of allowed weight of the cake and an algorithm to reduce weight.

Problem

Compute the maximal s such that the area of the remaining polygon has proportion less or equal than a.

(Possible) Solution

- Fix parameter s
- Generate reduced shape
- Calculate area of complete / reduced shape and their ratio

C - Cake

Input

Given a convex polygon (the surface of a cake), a ratio a of allowed weight of the cake and an algorithm to reduce weight.

Problem

Compute the maximal s such that the area of the remaining polygon has proportion less or equal than a.

(Possible) Solution

- Fix parameter s
- Generate reduced shape
- Calculate area of complete / reduced shape and their ratio

The ratio depends on s in a strictly increasing manner.
\Rightarrow Binary search is possible.

C - Cake

Input

Given a convex polygon (the surface of a cake), a ratio a of allowed weight of the cake and an algorithm to reduce weight.

Problem

Compute the maximal s such that the area of the remaining polygon has proportion less or equal than a.

(Possible) Solution

- Fix parameter s
- Generate reduced shape
- Calculate area of complete / reduced shape and their ratio

The ratio depends on s in a strictly increasing manner.
\Rightarrow Binary search is possible.
WARING: Precision is a huge issue!

C - Cake

Insight

The removed area grows proportional with $\frac{1}{s^{2}}$.

C - Cake

Input

Given a convex polygon (the surface of a cake), a ratio a of allowed weight of the cake and an algorithm to reduce weight.

Problem

Compute the maximal s such that the area of the remaining polygon has proportion less or equal than a.

Better Solution

- The removed area grows proportional with $\frac{1}{s^{2}}$.
- Compute the reduced area for some value of s and scale.

C - Cake

Input

Given a convex polygon (the surface of a cake), a ratio a of allowed weight of the cake and an algorithm to reduce weight.

Problem

Compute the maximal s such that the area of the remaining polygon has proportion less or equal than a.

Better Solution

- The removed area grows proportional with $\frac{1}{s^{2}}$.
- Compute the reduced area for some value of s and scale.
- Use $s=2$ (we call the reduced area $A_{s=2}$).
- Use only 64 bit integers to avoid precision issues.

C - Cake

Input

Given a convex polygon (the surface of a cake), a ratio a of allowed weight of the cake and an algorithm to reduce weight.

Problem

Compute the maximal s such that the area of the remaining polygon has proportion less or equal than a.

Better Solution

- The removed area grows proportional with $\frac{1}{s^{2}}$.
- Compute the reduced area for some value of s and scale.
- Use $s=2$ (we call the reduced area $A_{s=2}$).
- Use only 64 bit integers to avoid precision issues.

$$
\begin{aligned}
& \left(A_{\text {full }}-A_{s}\right)=\left(A_{\text {full }}-A_{s=2}\right) \cdot 2^{2} / s^{2} \text { and } \\
& s_{\max }=2 \cdot \sqrt{\left(A_{\text {full }}-A_{s=2}\right) /\left(A_{\text {full }} \cdot(1-a)\right)}
\end{aligned}
$$

D - Carpets - Statistics

Statistics: 11 submissions, 1 accepted

D - Carpets

Problem

Decide whether a rectangular room can be covered by a given set of smaller rectangular carpets (count ≤ 7).

D - Carpets

Problem

Decide whether a rectangular room can be covered by a given set of smaller rectangular carpets (count ≤ 7).

Solution: Backtracking + obvious optimizations

Try filling a 2D-array of booleans representing the room:
(1) Find the topmost row with free cells and pick the leftmost cell
(2) If no cell free any more, return "yes"
(3) For any carpet in stock \& rotation and fitting at the given cell:
(1) Put the carpet
(2) If recursive call to (1) successful, return "yes"
(3) Put the carpet back to stock
(9) If all available carpets tried, return "no"

E - Change of Scenery - Statistics

Statistics: 79 submissions, 6 accepted

E - Change of Scenery

Problem

Given a shortest path between node S and T in a graph. Is there is a different path of the same length between S and T ?

E - Change of Scenery

Problem

Given a shortest path between node S and T in a graph. Is there is a different path of the same length between S and T ?

Solution

- Dijkstra with minor adjustments.
- Keep track of the set of nodes N that can be reached via multiple shortest paths.
- Add a node to N if
- you reach it a second time without updating OR
- you update it from a node in N.
- Don't forget to remove it from N if you update it from a node not in N !
- Finally, report whether the target is in N.

F - Divisions - Statistics

Statistics: 49 submissions, 1 accepted

F - Divisions

Problem

Given: a positive integer $N,\left(1 \leq N \leq 10^{18}\right)$
Output the number of positive integral divisors D_{N} of N.

F - Divisions

Problem

Given: a positive integer $N,\left(1 \leq N \leq 10^{18}\right)$
Output the number of positive integral divisors D_{N} of N.

(Naive) Solution: Standard factorization in $O(\sqrt{N})$

Let $N=\prod_{i=1}^{k} p_{i}^{n_{i}}$, e.g. $288=2^{5} * 3^{2}$
where p_{i} are the prime factors of N.
$\Longrightarrow D_{N}=\prod_{i=1}^{k}\left(n_{i}+1\right)$, e.g. $D_{288}=(5+1) \cdot(2+1)=18$.

F - Divisions

Problem

Given: a positive integer $N,\left(1 \leq N \leq 10^{18}\right)$
Output the number of positive integral divisors D_{N} of N.

(Naive) Solution: Standard factorization in $O(\sqrt{N})$

Let $N=\prod_{i=1}^{k} p_{i}^{n_{i}}$, e.g. $288=2^{5} * 3^{2}$
where p_{i} are the prime factors of N.
$\Longrightarrow D_{N}=\prod_{i=1}^{k}\left(n_{i}+1\right)$, e.g. $D_{288}=(5+1) \cdot(2+1)=18$.

Insight

- Do factorization only for prime factors up to $\sqrt[3]{N}$.
- $N=C \cdot \prod_{i=1}^{m} p_{i}^{n_{i}}$, where $p_{i} \leq \sqrt[3]{N}$ are prime factors of N.
- C contains no divisor less than $\sqrt[3]{N}$.

F - Divisions

Solution

Let $N=\prod_{i=1}^{k} p_{i}^{n_{i}}$, then result is $\prod_{i=1}^{k}\left(n_{i}+1\right)$.

- $N=C \cdot \prod_{i=1}^{m} p_{i}^{n_{i}}$, where C contains no prime factor $\leq \sqrt[3]{N}$.

F - Divisions

Solution

Let $N=\prod_{i=1}^{k} p_{i}^{n_{i}}$, then result is $\prod_{i=1}^{k}\left(n_{i}+1\right)$.

- $N=C \cdot \prod_{i=1}^{m} p_{i}^{n_{i}}$, where C contains no prime factor $\leq \sqrt[3]{N}$.
- Insight: C is either 1, prime, or the product of two primes.

F - Divisions

Solution

Let $N=\prod_{i=1}^{k} p_{i}^{n_{i}}$, then result is $\prod_{i=1}^{k}\left(n_{i}+1\right)$.

- $N=C \cdot \prod_{i=1}^{m} p_{i}^{n_{i}}$, where C contains no prime factor $\leq \sqrt[3]{N}$.
- Insight: C is either 1, prime, or the product of two primes. This results in the following few cases:
- $C=1$: output $\prod_{i=1}^{m}\left(n_{i}+1\right)$, check in $O(1)$.

F - Divisions

Solution

Let $N=\prod_{i=1}^{k} p_{i}^{n_{i}}$, then result is $\prod_{i=1}^{k}\left(n_{i}+1\right)$.

- $N=C \cdot \prod_{i=1}^{m} p_{i}^{n_{i}}$, where C contains no prime factor $\leq \sqrt[3]{N}$.
- Insight: C is either 1, prime, or the product of two primes. This results in the following few cases:
- $C=1$: output $\prod_{i=1}^{m}\left(n_{i}+1\right)$, check in $O(1)$.
- C is prime: output $2 \cdot \prod_{i=1}^{m}\left(n_{i}+1\right)$, check in $O(\log N)$.

F - Divisions

Solution

Let $N=\prod_{i=1}^{k} p_{i}^{n_{i}}$, then result is $\prod_{i=1}^{k}\left(n_{i}+1\right)$.

- $N=C \cdot \prod_{i=1}^{m} p_{i}^{n_{i}}$, where C contains no prime factor $\leq \sqrt[3]{N}$.
- Insight: C is either 1, prime, or the product of two primes. This results in the following few cases:
- $C=1$: output $\prod_{i=1}^{m}\left(n_{i}+1\right)$, check in $O(1)$.
- C is prime: output $2 \cdot \prod_{i=1}^{m}\left(n_{i}+1\right)$, check in $O(\log N)$.
- C is a product of two equal primes / square: output $3 \cdot \prod_{i=1}^{m}\left(n_{i}+1\right)$, check in $O(\log N)$, e.g. use sqrt.

F - Divisions

Solution

Let $N=\prod_{i=1}^{k} p_{i}^{n_{i}}$, then result is $\prod_{i=1}^{k}\left(n_{i}+1\right)$.

- $N=C \cdot \prod_{i=1}^{m} p_{i}^{n_{i}}$, where C contains no prime factor $\leq \sqrt[3]{N}$.
- Insight: C is either 1 , prime, or the product of two primes. This results in the following few cases:
- $C=1$: output $\prod_{i=1}^{m}\left(n_{i}+1\right)$, check in $O(1)$.
- C is prime: output $2 \cdot \prod_{i=1}^{m}\left(n_{i}+1\right)$, check in $O(\log N)$.
- C is a product of two equal primes / square: output $3 \cdot \prod_{i=1}^{m}\left(n_{i}+1\right)$, check in $O(\log N)$, e.g. use sqrt.
- C is a product of two different primes: output $2 \cdot 2 \cdot \prod_{i=1}^{m}\left(n_{i}+1\right)$, no further check necessary.

F - Divisions

Solution

Let $N=\prod_{i=1}^{k} p_{i}^{n_{i}}$, then result is $\prod_{i=1}^{k}\left(n_{i}+1\right)$. Alternative solution:

- Use pollard ρ algorithm for factorization.
- Beware of overflows.

G - Extreme Sort - Statistics

Statistics: 74 submissions, 62 accepted

G - Extreme Sort

Problem

Check whether input sequence is correctly sorted in ascending order.

G - Extreme Sort

Problem

Check whether input sequence is correctly sorted in ascending order.
Solution 1

- Check whether $x_{i} \leq x_{i+1}$ for all i.
- $\Rightarrow \mathcal{O}(n)$

G - Extreme Sort

Problem

Check whether input sequence is correctly sorted in ascending order.

Solution 1

- Check whether $x_{i} \leq x_{i+1}$ for all i.
- $\Rightarrow \mathcal{O}(n)$

Solution 2

- Don't think, just calculate the extreme property, i.e. calculate all $x_{i, j}$ and print "no" if any of those is less than 0 , otherwise print "yes".
- $\Rightarrow \mathcal{O}\left(n^{2}\right)$ - fast enough.

G - Extreme Sort

Solution 3

- Copy the input sequence, sort it, compare to original.
- Python:
print("yes" if data == sorted(data) else "no")
- $\Rightarrow \mathcal{O}(n \log n)$

Solution 4

- Know your standard library.
- C++:
std::cout <<
(std::prev_permutation(begin(data), end(data))
? "no" : "yes") << std::endl;
- $\Rightarrow \mathcal{O}(n)$

H - Legacy Code - Statistics

Statistics: 138 submissions, 34 accepted

Legacy Code

Problem

For every method in a program all callers are given.
Find the number of unused methods no matter which program is run.

Legacy Code

Solution

- Transpose directions in the "used by"-graph to a "using"-graph.
- Explore the resulting graph with help of your favorite algorithm (bfs, dfs) choosing XXX: :PROGRAM as starting nodes.
- Count unvisited nodes.

I - Milling Machines - Statistics

Statistics: 100 submissions, 57 accepted

I - Milling Machines

Problem

Given a large number of work pieces and a large number of milling steps.

I - Milling Machines

Problem

Given a large number of work pieces and a large number of milling steps.

Solution

- Naive solution is way too slow $\left(10^{4} \cdot 10^{4} \cdot 100^{2}=10^{12}\right)$.
- Insight: Milling steps may be combined using a maximum operation.
- \Rightarrow Combine milling steps and apply combined step on every workpiece.
- Reduces complexity to $10^{4} \cdot 100^{2}=10^{8}$.

J - Souvenirs - Statistics

Statistics: 10 submissions, 2 accepted

J - Souvenirs

Problem

Two type of coins. Buy as many souvenirs as possible. Merchants have different prices, different methods of rounding and different values to round towards.

J - Souvenirs

Problem

Two type of coins. Buy as many souvenirs as possible. Merchants have different prices, different methods of rounding and different values to round towards.

```
Solution
function buy(gold, silver, m)
```


J - Souvenirs

Problem

Two type of coins. Buy as many souvenirs as possible. Merchants have different prices, different methods of rounding and different values to round towards.

Solution

function buy(gold, silver, m)

$$
\text { best }=\text { buy(gold, silver, m+1) //don't buy }
$$

return best

J - Souvenirs

Problem

Two type of coins. Buy as many souvenirs as possible. Merchants have different prices, different methods of rounding and different values to round towards.

Solution

function buy(gold, silver, m)

```
best = buy(gold, silver, m+1) //don't buy
if(silver >= price[m]) //buy with silver
    best = max(best, 1+buy(gold, silver-price[m], m+1))
```

return best

J - Souvenirs

Problem

Two type of coins. Buy as many souvenirs as possible. Merchants have different prices, different methods of rounding and different values to round towards.

Solution

function buy(gold, silver, m)
best = buy(gold, silver, m+1) //don't buy if (silver >= price[m]) //buy with silver best = max (best, 1+buy(gold, silver-price[m], m+1))
(else) if (gold >= 1) //buy with gold
ret $=$ roundCorrectly (goldInSilver - price[m])
best $=\max ($ best, $1+$ buy (gold-1, silver + ret, $m+1)$)
return best

J-Souvenirs

Problem

Two type of coins. Buy as many souvenirs as possible. Merchants have different prices, different methods of rounding and different values to round towards.

Solution

function buy(gold, silver, m)
if (dp [gold] [silver] [m] != UNDEF)
return dp [gold] [silver] [m]
best = buy(gold, silver, m+1) //don't buy
if (silver >= price[m]) //buy with silver best $=\max ($ best, $1+$ buy (gold, silver-price[m], m+1))
(else) if (gold >= 1) //buy with gold
ret = roundCorrectly (goldInSilver - price[m])
best $=\max (b e s t, 1+b u y(g o l d-1$, silver + ret, $m+1)$)
return best $=\mathrm{dp}$ [gold] [silver] [m]

K - Upside Down Primes - Statistics

Statistics: 260 submissions, 50 accepted

K - Upside down primes

Problem

Given an integer N, check if N is prime and still a prime after N is rotated by 180 degrees.

K - Upside down primes

Problem

Given an integer N, check if N is prime and still a prime after N is rotated by 180 degrees.

Solution

- no if N contains 3,4 or 7
- no if N is composite (use standard primality test)
- no if rotated N is composite (use standard primality test)
- otherwise: yes

K - Upside down primes

Problem

Given an integer N, check if N is prime and still a prime after N is rotated by 180 degrees.

Solution

- no if N contains 3,4 or 7
- no if N is composite (use standard primality test)
- no if rotated N is composite (use standard primality test)
- otherwise: yes

Common mistakes

- 1 is not prime, 2 is prime (so are 3 and 5)
- replace 6 to 9 and vice versa in parallel!
- square root might be a prime factor
- use 64 bit ints all the way

