Solution Outlines

Jury

GCPC 2013

Boggle

- 4×4 grid of characters \Rightarrow enumerate all ≈ 300000 words
- linear lookup in dictionary with 300000 words is obviously too slow

Boggle

- 4×4 grid of characters \Rightarrow enumerate all ≈ 300000 words
- linear lookup in dictionary with 300000 words is obviously too slow
- compute trie with all dictionary words in linear time
- check if a word is possible while enumerating

Boggle

- 4×4 grid of characters
\Rightarrow enumerate all ≈ 300000 words
- linear lookup in dictionary with 300000 words is obviously too slow
- compute trie with all dictionary words in linear time
- check if a word is possible while enumerating
- second option: use binary search in sorted dictionary instead of trie (don't forget to prune then)

Booking

Assign bookings to rooms

- Conflict / compatibility graph (bookings are vertices, conflicts/compatibilities are edges)
- Coloring / clique partitioning

Booking

Assign bookings to rooms

- Conflict / compatibility graph (bookings are vertices, conflicts/compatibilities are edges)
- Coloring / clique partitioning
- Problem has special structure (timings)
- Equals register allocation problem for variables in data/control-flow graph
- Solution: Left-Edge Algorithm (runs in at most $\mathcal{O}\left(B^{2}\right)$ (worst case))

Booking

- Read in bookings
- convert dates to time stamps (e.g. with Java DateFormatter)
- don't forget that 2016 is a leap year
- Sort bookings by arrival date
- Assign same "color" to bookings that do not overlap (Left-Edge Algorithm)
- Don't forget the cleaning time

Booking

However, we don't care for the actual room assignments \Rightarrow forget about Left-Edge Algorithm

Booking

However, we don't care for the actual room assignments \Rightarrow forget about Left-Edge Algorithm

Alternative solution:

- Read in dates as before
- Add cleaning time to departures
- Store arrivals and departures individually (as "events") in one array
- Use a flag to indicate which events are arrivals and which ones are departures

Booking

- Sort events (dates) by time stamp (if time stamps are equal, departures come before arrivals)
- Iterature through array and maintain a counter:
- increment, if event (time stamp) marks an arrival
- decrement, if event (time stamp) marks a departure
- Output maximum value of counter
- Runs in $\mathcal{O}(B \cdot \log B+B)=\mathcal{O}(B \cdot \log B)$

Chess

- Easiest problem of the set

Chess

- Easiest problem of the set
- You are already at the goal

Chess

- Easiest problem of the set
- You are already at the goal
- You can move directly

Chess

- Easiest problem of the set
- You are already at the goal
- You can move directly
- You can reach the goal in two moves
- Two possible ways

Chess

- Easiest problem of the set
- You are already at the goal
- You can move directly
- You can reach the goal in two moves
- Two possible ways
- One may be invalid

Chess

- Easiest problem of the set
- You are already at the goal
- You can move directly
- You can reach the goal in two moves
- Two possible ways
- One may be invalid
- You cannot reach the goal at all

Kastenlauf

- read coordinates of locations
- build graph;
- location becomes node
- insert edge if distance not greater than 1000

Kastenlauf

- read coordinates of locations
- build graph;
- location becomes node
- insert edge if distance not greater than 1000
- in this graph: is end node reachable from start node?
- DFS, or BFS, or anything...
- $\mathcal{O}\left(n^{3}\right)$ solutions acceptable, although better ones do exist.

No Trees but Flowers

- Volume computation of rotational body
- Integration of 1D function $f(x)=a \cdot e^{-x^{2}}+b \cdot \sqrt{x}$
- $V=\int_{0}^{h} f(x)^{2} \cdot \pi$

No Trees but Flowers

- Volume computation of rotational body
- Integration of 1D function $f(x)=a \cdot e^{-x^{2}}+b \cdot \sqrt{x}$
- $V=\int_{0}^{h} f(x)^{2} \cdot \pi$
- $e^{-x^{2}}$ cannot be analytically integrated
- Use numerical integration instead

No Trees but Flowers

- Volume computation of rotational body
- Integration of 1D function $f(x)=a \cdot e^{-x^{2}}+b \cdot \sqrt{x}$
- $V=\int_{0}^{h} f(x)^{2} \cdot \pi$
- $e^{-x^{2}}$ cannot be analytically integrated
- Use numerical integration instead
- Naive implementation usually too slow
- At least trapezoidal rule required

How to estimate the required mesh width?

- Absolute accuracy specified
- Maximum relative accuracy required for largest integral value
- $\rightarrow a=10, b=10, h=10$
- Offline convergence test gives valid mesh width

Alignment of Discretization

- Upper bound (h) may not be an integer.
- Align discretization to integration bounds.

Peg Solitaire

- Estimate the number of possible game developments:

Peg Solitaire

- Estimate the number of possible game developments:
- not more than 2 available moves/peg on average

Peg Solitaire

- Estimate the number of possible game developments:
- not more than 2 available moves/peg on average
- each move eliminates one peg

Peg Solitaire

- Estimate the number of possible game developments:
- not more than 2 available moves/peg on average
- each move eliminates one peg
- $2^{P-1} \cdot P!=5160960$ for $P=8$ pegs

Peg Solitaire

- Estimate the number of possible game developments:
- not more than 2 available moves/peg on average
- each move eliminates one peg
- $2^{P-1} \cdot P!=5160960$ for $P=8$ pegs
\Rightarrow Small enough to use backtracking (without further improvements)

Ringworld

- Given n intervals on a circle, choose one node inside each interval so that no node is used twice.

Ringworld

- Given n intervals on a circle, choose one node inside each interval so that no node is used twice.
- First consider the problem on a line. Then a simple greedy algorithm works:
- scan the nodes from left to right,
- whenever we counter the right endpoint b_{i} of an interval [a_{i}, b_{i}], choose the leftmost available node $\geq a_{i}$.
- Can be implemented in $\mathcal{O}(n \log n)$ time with some balanced search tree, set is good enough.

Ringworld

- Given n intervals on a circle, choose one node inside each interval so that no node is used twice.
- First consider the problem on a line. Then a simple greedy algorithm works:
- scan the nodes from left to right,
- whenever we counter the right endpoint b_{i} of an interval [a_{i}, b_{i}], choose the leftmost available node $\geq a_{i}$.
- Can be implemented in $\mathcal{O}(n \log n)$ time with some balanced search tree, set is good enough.
- Now go back to the circle. Does the same reasoning work?

Ringworld

- If we can cut the circle in such a way that the cut doesn't intersect any interval, we can apply the above method.
- But what to do when we cannot find such a cut?

Ringworld

- If we can cut the circle in such a way that the cut doesn't intersect any interval, we can apply the above method.
- But what to do when we cannot find such a cut?
- For each interval $\left[a_{i}, b_{i}\right.$] create one or two intervals on $[0,1, \ldots, 2 m-1]$:
- if $a_{i} \leq b_{i}$ create $\left[a_{i}, b_{i}\right]$ and $\left[m+a_{i}, m+b_{i}\right]$,
- otherwise create $\left[a_{i}, m+b_{i}\right]$.

Ringworld

- If we can cut the circle in such a way that the cut doesn't intersect any interval, we can apply the above method.
- But what to do when we cannot find such a cut?
- For each interval $\left[a_{i}, b_{i}\right]$ create one or two intervals on $[0,1, \ldots, 2 m-1]$:
- if $a_{i} \leq b_{i}$ create $\left[a_{i}, b_{i}\right]$ and $\left[m+a_{i}, m+b_{i}\right]$,
- otherwise create $\left[a_{i}, m+b_{i}\right]$.
- Now you can prove that if $n \leq m$, the original circle problem has a solution iff the new line problem has a solution.
- Proof formulating the question as a matching in a bipartite graph, and applying the Hall's theorem.

The King of the North

- Classic flow problem with vertex capacities where castle $\widehat{=}$ source and the (unshown) border $\widehat{=}$ sink

The King of the North

- Classic flow problem with vertex capacities where castle $\widehat{=}$ source and the (unshown) border $\widehat{=}$ sink
- Reduce to flow problem by using vertex duplication (in/out vertex) for the arc capacities
- Perform your standard max-flow algorithm to calculate the minimum cut

Ticket Draw

- For $M=m_{1} \ldots m_{n}, Z=z_{1} \ldots z_{n}$, and r, compute $S(n)$ - the number of strings a_{1}, \ldots, a_{n} over $\{0,1, \ldots, 9\}$ of length n which
(1) represent integers smaller or equal to $M-1$ and
(2) do not r-match Z, i.e. such that $z_{i} \ldots z_{i+r-1} \neq a_{i} \ldots a_{i+r-1}$ for all i.
- The number of tickets is $M-S(n)$.

Ticket Draw

- For $M=m_{1} \ldots m_{n}, Z=z_{1} \ldots z_{n}$, and r, compute $S(n)$ - the number of strings a_{1}, \ldots, a_{n} over $\{0,1, \ldots, 9\}$ of length n which
(1) represent integers smaller or equal to $M-1$ and
(2) do not r-match Z, i.e. such that

$$
z_{i} \ldots z_{i+r-1} \neq a_{i} \ldots a_{i+r-1} \text { for all } i .
$$

- The number of tickets is $M-S(n)$.
- First an easier task: drop the constraint (1) and compute $F(n)$ - the number of strings of length n which do not r-match Z.
- Use DP and the recurrence relation:

$$
F(n)=\sum_{i=1}^{r} 9 \cdot F(n-i)
$$

Ticket Draw

- Using $F(1), F(2), \ldots F(n)$ compute $S(n)$ via DP.
- Start with $S(1), \ldots, S(r)$ and compute $S(k)$ for $k=r+1, \ldots, n$.
- If $z_{k}>m_{k}$ then $S(k)=m_{k} \cdot F(k-1)+S(k-1)$.
- If $z_{k}<m_{k}$ then

$$
S(k)=\left(m_{k}-1\right) \cdot F(k-1)+S(k-1)+\sum_{j=2}^{r} 9 \cdot F(k-j) .
$$

- What if $z_{k}=m_{k}$?

Ticket Draw

- Using $F(1), F(2), \ldots F(n)$ compute $S(n)$ via DP.
- Start with $S(1), \ldots, S(r)$ and compute $S(k)$ for $k=r+1, \ldots, n$.
- If $z_{k}>m_{k}$ then $S(k)=m_{k} \cdot F(k-1)+S(k-1)$.
- If $z_{k}<m_{k}$ then

$$
S(k)=\left(m_{k}-1\right) \cdot F(k-1)+S(k-1)+\sum_{j=2}^{r} 9 \cdot F(k-j) .
$$

- What if $z_{k}=m_{k}$?
- Idea: initialize the value $S(k)$ with $m_{k} \cdot F(k-1)$ and continue with comparing next digits.
- Running time: $O(r \cdot \log M)$.

Timing

- Each node's output is ≥ 0 and sums up to 1

Timing

- Each node's output is ≥ 0 and sums up to 1
- Evolution can be modelled as a Markov chain

Timing

- Each node's output is ≥ 0 and sums up to 1
- Evolution can be modelled as a Markov chain
- \Rightarrow compute $A^{t} \cdot \vec{u}$
($A \widehat{=}$ matrix of links, $t \widehat{=}$ time until attack, $\vec{u} \widehat{=}$ strengths)

Timing

- Each node's output is ≥ 0 and sums up to 1
- Evolution can be modelled as a Markov chain
- \Rightarrow compute $A^{t} \cdot \vec{u}$
($A \widehat{=}$ matrix of links, $t \widehat{=}$ time until attack, $\vec{u} \widehat{=}$ strengths)
- $\mathcal{O}\left(t \cdot N^{3}\right)$ is too slow \Rightarrow use fast exponentiation
- Compute weak point by looking at the direct neighbourhood in $\mathcal{O}\left(N^{2}\right)$

Triangles

- Given two triangles a and b in 3D, are they tangled?
- The problem statement excludes all degenerate cases.
- 3D is difficult, so maybe try to reduce the problem to 2D?

Triangles

- Given two triangles a and b in 3D, are they tangled?
- The problem statement excludes all degenerate cases.
- 3D is difficult, so maybe try to reduce the problem to 2D?
- Take a and consider the (unique) plane P containing it.

Triangles

- Draw both a and the intersection of b with P.

Triangles

- Draw both a and the intersection of b with P.

- The triangles are tangled iff the the intersection of b with P contains a point inside and a point outside of $a($ on P).

Triangles

- Draw both a and the intersection of b with P.

- The triangles are tangled iff the the intersection of b with P contains a point inside and a point outside of $a($ on P).
- Many ways to compute the intersection, the simplest is probably solving a system of linear equations.

