

GCPC 2012

GCPC 2012 Jury

gcpc@gcpc.nwerc.eu

30.06.2012

- Solve by Simulation
- Read problem statement carefully
- Ending the game and draw may be tricky cases

• Problem: decide whether a program terminates

- Problem: decide whether a program terminates
- Solution: simulate program while keeping track of states
- simulate concurrently at normal and at double speed (Floyd/Brent's cycle trick)
- if both simulations have equal state: loop!
- needs clever state comparison to be fast enough

- \Rightarrow simpler solution: just simulate 50 000 000 steps
- ${\, \bullet \,}$ if not terminated ${\, \rightarrow \,}$ loop
- simulate another 50 000 000 steps to get loop instructions
- no state comparison needed

Candy Distribution

- K kids, C candies in one bag
- to compute: #bags b so that b · C = (K · X) + 1 (X is a positive integer)

Candy Distribution

- K kids, C candies in one bag
- to compute: #bags b so that b · C = (K · X) + 1 (X is a positive integer)
- $\bullet \Rightarrow b \cdot C \equiv 1 \bmod K$

👼 🔓 Candy Distribution

- K kids, C candies in one bag
- to compute: #bags b so that b · C = (K · X) + 1 (X is a positive integer)
- $\bullet \Rightarrow b \cdot C \equiv 1 \bmod K$
- compute modular inverse with extended euclid
- be careful with special cases like K = 1, C = 1, or both

👼 🗳 Candy Distribution

- K kids, C candies in one bag
- to compute: #bags b so that b · C = (K · X) + 1 (X is a positive integer)
- $\Rightarrow b \cdot C \equiv 1 \mod K$
- compute modular inverse with extended euclid
- be careful with special cases like K = 1, C = 1, or both
- equation solvable if K and C coprime

• Underlying problem: Check two DFAs for equivalence

- Underlying problem: Check two DFAs for equivalence
- No bruteforcing possible (how?)

- Underlying problem: Check two DFAs for equivalence
- No bruteforcing possible (how?)
- Possible solution:

- Underlying problem: Check two DFAs for equivalence
- No bruteforcing possible (how?)
- Possible solution:
 - Minimize both DFAs (see Hopcroft/Ullman)
 - Check for equivalence by for example DFS:
 - Simultaneous DFS on the two minimized automatas numbering the states in preorder
 - Check if the state reached by an input character has same DFS number or is unvisited
 - Check if the final states have the same DFS number
 - Runs in $O(|states|^2 \cdot |\Sigma|)$

• Smart algorithm by Hopcroft and Karp:

• Smart algorithm by Hopcroft and Karp:

- Join the automata
- Union states that are reached by the same inputs by DFS
- After all, check if there is a union of exactly the two final states
- Really fast (nearly O(|states| + |transitions|)) with a good union-find implementation

- Given the ingredients of Pizzas in two languages
- For each word determine which words could have the same meaning in the other language

- Given the ingredients of Pizzas in two languages
- For each word determine which words could have the same meaning in the other language
- Solution: Match words which appear as ingredients on the same set of Pizzas

- Given the ingredients of Pizzas in two languages
- For each word determine which words could have the same meaning in the other language
- Solution: Match words which appear as ingredients on the same set of Pizzas
- Use bitmasks to specify for each ingredient the subset of Pizzas on which this ingredient occurs.

- Given the ingredients of Pizzas in two languages
- For each word determine which words could have the same meaning in the other language
- Solution: Match words which appear as ingredients on the same set of Pizzas
- Use bitmasks to specify for each ingredient the subset of Pizzas on which this ingredient occurs.
- Brute force over all pairs of words and check if their corresponding bitmasks are equal

Normal Knapsack problems can be solved by either of the two possible recursion equations:

Normal Knapsack problems can be solved by either of the two possible recursion equations:

• Unbounded Knapsack:

$$dp[id][size] = \max \begin{cases} dp[id - 1][size] \\ dp[id][size - weight[id]] + profit[id] \end{cases}$$
• $0/1$ -Knapsack:

$$dp[id][size] = \max \begin{cases} dp[id - 1][size] \\ dp[id - 1][size - weight[id]] + profit[id] \end{cases}$$

For this problem we need both recursion types. An item (roller coaster) is given by the three values a_i , b_i and t_i

👦 🗳 Roller coaster fun

For this problem we need both recursion types. An item (roller coaster) is given by the three values a_i , b_i and t_i

• Case $b_i = 0$ (unbounded knapsack): $dp[i][T] = \max\{dp[i-1][T], dp[i][T-t_i] + a_i\}$

📲 🗿 Roller coaster fun

For this problem we need both recursion types. An item (roller coaster) is given by the three values a_i , b_i and t_i

- Case $b_i = 0$ (unbounded knapsack): $dp[i][T] = \max\{dp[i-1][T], dp[i][T-t_i] + a_i\}$
- Case $b_i \neq 0$ (0/1-knapsack?)

📲 🚰 Roller coaster fun

For this problem we need both recursion types. An item (roller coaster) is given by the three values a_i , b_i and t_i

- Case $b_i = 0$ (unbounded knapsack): $dp[i][T] = \max\{dp[i-1][T], dp[i][T-t_i] + a_i\}$
- Case b_i ≠ 0 (0/1-knapsack?) No!

📸 🔓 Roller coaster fun

For this problem we need both recursion types. An item (roller coaster) is given by the three values a_i , b_i and t_i

- Case $b_i = 0$ (unbounded knapsack): $dp[i][T] = \max\{dp[i-1][T], dp[i][T-t_i] + a_i\}$
- Case $b_i \neq 0$ (0/1-knapsack?) No!

 \Rightarrow split into J_i items, where the k-th item has a profit (fun) of $a_i - (k-1)^2 \cdot b_i$ and weight (time) t_i . J_i is the largest index where the profit is positive.

📸 🔓 Roller coaster fun

For this problem we need both recursion types. An item (roller coaster) is given by the three values a_i , b_i and t_i

- Case $b_i = 0$ (unbounded knapsack): $dp[i][T] = \max\{dp[i-1][T], dp[i][T-t_i] + a_i\}$
- Case b_i ≠ 0 (0/1-knapsack?) No!

⇒ split into J_i items, where the *k*-th item has a profit (fun) of $a_i - (k-1)^2 \cdot b_i$ and weight (time) t_i . J_i is the largest index where the profit is positive. Use 0/1-*knapsack* on those items!

Time complexity:

- Build table: $O(N \cdot J_{max} \cdot T_{max})$
- Query table entries: O(Q)

Only one testcase, $J_{max} \leq 32$ \Rightarrow time complexity is sufficient

Memory complexity: Size of table: $N \cdot J_{max} \cdot T_{max} \approx 305 \text{MB}$


```
Memory complexity:
Size of table: N \cdot J_{max} \cdot T_{max} \approx 305 \text{MB}
Idea:
```

- Calculate table line by line
- Only previous line necessary for calculation
- Only last line is needed for the queries

Memory complexity:
Size of table:
$$N \cdot J_{max} \cdot T_{max} \approx 305 \text{MB}$$

Idea:

- Calculate table line by line
- Only previous line necessary for calculation
- Only last line is needed for the queries

 \rightsquigarrow Memory: $O(2 \cdot T_{max}) < 1$ MB

- Find /
 - by solving for $l \rightarrow$ much math, paper and pencil approach, $\mathcal{O}(1)$
 - 2 by binary search on $I \rightarrow$ easy too implement, $\mathcal{O}(\log N)$

- Get landing speed |v|
 - v_x = speed gained in approach, not changed during flight
 - v_y = speed gained during flight (drop since approach)

- Get landing angle
 - First derivatives of f and h yield slopes
 - Obtain slopes at landing point
 - Write slopes as vector and apply given equation
 - Convert rad to degree

GCPC 2012 Jury

GCPC 2012

• Problem: Reconstruct a full string from a partial set of suffixes

- Problem: Reconstruct a full string from a partial set of suffixes
- Straight forward task, special character '*' occurs at most once per suffix
- Fill in characters into output string, print IMPOSSIBLE whenever a conflict occurs or characters are missing

- Problem: Reconstruct a full string from a partial set of suffixes
- Straight forward task, special character '*' occurs at most once per suffix
- Fill in characters into output string, print IMPOSSIBLE whenever a conflict occurs or characters are missing

- Problem: Reconstruct a full string from a partial set of suffixes
- Straight forward task, special character '*' occurs at most once per suffix
- Fill in characters into output string, print IMPOSSIBLE whenever a conflict occurs or characters are missing

- Problem: Reconstruct a full string from a partial set of suffixes
- Straight forward task, special character '*' occurs at most once per suffix
- Fill in characters into output string, print IMPOSSIBLE whenever a conflict occurs or characters are missing

• intended to be the easiest problem

- intended to be the easiest problem
- calculate distance between letters:

```
string keys[3] = {"qwertyuiop","asdfghjkl","zxcvbnm"};
for(i,0..3) for(j,0..keys[i].size()) {
    x[keys[i][j]] = i;
    y[keys[i][j]] = j;
}
```


- intended to be the easiest problem
- calculate distance between letters:

```
string keys[3] = {"qwertyuiop","asdfghjkl","zxcvbnm"};
for(i,0..3) for(j,0..keys[i].size()) {
    x[keys[i][j]] = i;
    y[keys[i][j]] = j;
}
```

o compute distance sums:

- intended to be the easiest problem
- calculate distance between letters:

```
string keys[3] = {"qwertyuiop","asdfghjkl","zxcvbnm"};
for(i,0..3) for(j,0..keys[i].size()) {
    x[keys[i][j]] = i;
    y[keys[i][j]] = j;
}
```

compute distance sums:

sort and print

scale with f

border with distance r

Track Smoothing

$f \cdot track_length$

Track Smoothing

$f \cdot \text{track_length} + 2r\pi$

$f \cdot \text{track_length} + 2r\pi = \text{track_length}$

•
$$f = rac{ extsf{track_length} - 2r\pi}{ extsf{track_length}}$$

$f \cdot \text{track_length} + 2r\pi = \text{track_length}$

 Problem: decide how many Treasures a diver can rescue from a cave network using a limited air budget

- Problem: decide how many Treasures a diver can rescue from a cave network using a limited air budget
- Classical TSP instance, with a minor twist
- The diver does not have to collect all treasures, only maximal number possible
- Two step approach
 - calculate distance table

 (at most 8 Treasures + exit → 9x9 Table)
 - perform backtracking on table, recursing only if air sufficient for the return

Award Ceremony