
GCPC 2012

GCPC 2012 Jury

gcpc@gcpc.nwerc.eu

30.06.2012

GCPC 2012 Jury GCPC 2012 30.06.2012 1 / 18

Battleship

Solve by Simulation

Read problem statement carefully

Ending the game and draw may be tricky cases

GCPC 2012 Jury GCPC 2012 30.06.2012 2 / 18

BrainfuckVM

Problem: decide whether a program terminates

Solution: simulate program while keeping track of
states

simulate concurrently at normal and at double speed
(Floyd/Brent’s cycle trick)

if both simulations have equal state: loop!

needs clever state comparison to be fast enough

GCPC 2012 Jury GCPC 2012 30.06.2012 3 / 18

BrainfuckVM

Problem: decide whether a program terminates

Solution: simulate program while keeping track of
states

simulate concurrently at normal and at double speed
(Floyd/Brent’s cycle trick)

if both simulations have equal state: loop!

needs clever state comparison to be fast enough

GCPC 2012 Jury GCPC 2012 30.06.2012 3 / 18

BrainfuckVM

⇒ simpler solution: just simulate 50 000 000 steps

if not terminated → loop

simulate another 50 000 000 steps to get loop
instructions

no state comparison needed

GCPC 2012 Jury GCPC 2012 30.06.2012 4 / 18

Candy Distribution

K kids, C candies in one bag

to compute: #bags b so that b · C = (K · X) + 1
(X is a positive integer)

⇒ b · C ≡ 1 mod K

compute modular inverse with extended euclid

be careful with special cases like K = 1, C = 1, or
both

equation solvable if K and C coprime

GCPC 2012 Jury GCPC 2012 30.06.2012 5 / 18

Candy Distribution

K kids, C candies in one bag

to compute: #bags b so that b · C = (K · X) + 1
(X is a positive integer)

⇒ b · C ≡ 1 mod K

compute modular inverse with extended euclid

be careful with special cases like K = 1, C = 1, or
both

equation solvable if K and C coprime

GCPC 2012 Jury GCPC 2012 30.06.2012 5 / 18

Candy Distribution

K kids, C candies in one bag

to compute: #bags b so that b · C = (K · X) + 1
(X is a positive integer)

⇒ b · C ≡ 1 mod K

compute modular inverse with extended euclid

be careful with special cases like K = 1, C = 1, or
both

equation solvable if K and C coprime

GCPC 2012 Jury GCPC 2012 30.06.2012 5 / 18

Candy Distribution

K kids, C candies in one bag

to compute: #bags b so that b · C = (K · X) + 1
(X is a positive integer)

⇒ b · C ≡ 1 mod K

compute modular inverse with extended euclid

be careful with special cases like K = 1, C = 1, or
both

equation solvable if K and C coprime

GCPC 2012 Jury GCPC 2012 30.06.2012 5 / 18

Outsourcing

Underlying problem: Check two DFAs for
equivalence

No bruteforcing possible (how?)
Possible solution:

Minimize both DFAs (see Hopcroft/Ullman)
Check for equivalence by for example DFS:
Simultaneous DFS on the two minimized automatas
numbering the states in preorder
Check if the state reached by an input character has
same DFS number or is unvisited
Check if the final states have the same DFS number
Runs in O(|states|2 · |Σ|)

GCPC 2012 Jury GCPC 2012 30.06.2012 6 / 18

Outsourcing

Underlying problem: Check two DFAs for
equivalence

No bruteforcing possible (how?)

Possible solution:
Minimize both DFAs (see Hopcroft/Ullman)
Check for equivalence by for example DFS:
Simultaneous DFS on the two minimized automatas
numbering the states in preorder
Check if the state reached by an input character has
same DFS number or is unvisited
Check if the final states have the same DFS number
Runs in O(|states|2 · |Σ|)

GCPC 2012 Jury GCPC 2012 30.06.2012 6 / 18

Outsourcing

Underlying problem: Check two DFAs for
equivalence

No bruteforcing possible (how?)
Possible solution:

Minimize both DFAs (see Hopcroft/Ullman)
Check for equivalence by for example DFS:
Simultaneous DFS on the two minimized automatas
numbering the states in preorder
Check if the state reached by an input character has
same DFS number or is unvisited
Check if the final states have the same DFS number
Runs in O(|states|2 · |Σ|)

GCPC 2012 Jury GCPC 2012 30.06.2012 6 / 18

Outsourcing

Underlying problem: Check two DFAs for
equivalence

No bruteforcing possible (how?)
Possible solution:

Minimize both DFAs (see Hopcroft/Ullman)
Check for equivalence by for example DFS:
Simultaneous DFS on the two minimized automatas
numbering the states in preorder
Check if the state reached by an input character has
same DFS number or is unvisited
Check if the final states have the same DFS number
Runs in O(|states|2 · |Σ|)

GCPC 2012 Jury GCPC 2012 30.06.2012 6 / 18

Outsourcing

Smart algorithm by Hopcroft and Karp:

Join the automata
Union states that are reached by the same inputs by DFS
After all, check if there is a union of exactly the two final
states
Really fast (nearly O(|states|+ |transitions|)) with a
good union-find implementation

GCPC 2012 Jury GCPC 2012 30.06.2012 7 / 18

Outsourcing

Smart algorithm by Hopcroft and Karp:
Join the automata
Union states that are reached by the same inputs by DFS
After all, check if there is a union of exactly the two final
states
Really fast (nearly O(|states|+ |transitions|)) with a
good union-find implementation

GCPC 2012 Jury GCPC 2012 30.06.2012 7 / 18

Pizza Hawaii

Given the ingredients of Pizzas in two languages

For each word determine which words could have
the same meaning in the other language

Solution: Match words which appear as ingredients
on the same set of Pizzas

Use bitmasks to specify for each ingredient the
subset of Pizzas on which this ingredient occurs.

Brute force over all pairs of words and check if their
corresponding bitmasks are equal

GCPC 2012 Jury GCPC 2012 30.06.2012 8 / 18

Pizza Hawaii

Given the ingredients of Pizzas in two languages

For each word determine which words could have
the same meaning in the other language

Solution: Match words which appear as ingredients
on the same set of Pizzas

Use bitmasks to specify for each ingredient the
subset of Pizzas on which this ingredient occurs.

Brute force over all pairs of words and check if their
corresponding bitmasks are equal

GCPC 2012 Jury GCPC 2012 30.06.2012 8 / 18

Pizza Hawaii

Given the ingredients of Pizzas in two languages

For each word determine which words could have
the same meaning in the other language

Solution: Match words which appear as ingredients
on the same set of Pizzas

Use bitmasks to specify for each ingredient the
subset of Pizzas on which this ingredient occurs.

Brute force over all pairs of words and check if their
corresponding bitmasks are equal

GCPC 2012 Jury GCPC 2012 30.06.2012 8 / 18

Pizza Hawaii

Given the ingredients of Pizzas in two languages

For each word determine which words could have
the same meaning in the other language

Solution: Match words which appear as ingredients
on the same set of Pizzas

Use bitmasks to specify for each ingredient the
subset of Pizzas on which this ingredient occurs.

Brute force over all pairs of words and check if their
corresponding bitmasks are equal

GCPC 2012 Jury GCPC 2012 30.06.2012 8 / 18

Roller coaster fun

Normal Knapsack problems can be solved by either of
the two possible recursion equations:

Unbounded Knapsack:

dp[id][size] = max

{
dp[id − 1][size]

dp[id][size − weight[id]] + profit[id]

0/1-Knapsack:

dp[id][size] = max

{
dp[id − 1][size]

dp[id − 1][size − weight[id]] + profit[id]

GCPC 2012 Jury GCPC 2012 30.06.2012 9 / 18

Roller coaster fun

Normal Knapsack problems can be solved by either of
the two possible recursion equations:

Unbounded Knapsack:

dp[id][size] = max

{
dp[id − 1][size]

dp[id][size − weight[id]] + profit[id]

0/1-Knapsack:

dp[id][size] = max

{
dp[id − 1][size]

dp[id − 1][size − weight[id]] + profit[id]

GCPC 2012 Jury GCPC 2012 30.06.2012 9 / 18

Roller coaster fun

For this problem we need both recursion types. An item
(roller coaster) is given by the three values ai , bi and ti

Case bi = 0 (unbounded knapsack):
dp[i][T] = max{dp[i − 1][T], dp[i][T − ti] + ai}
Case bi 6= 0 (0/1-knapsack?)
No!
⇒ split into Ji items, where the k-th item has a
profit (fun) of ai − (k − 1)2 · bi and weight (time) ti .
Ji is the largest index where the profit is positive.
Use 0/1-knapsack on those items!

GCPC 2012 Jury GCPC 2012 30.06.2012 10 / 18

Roller coaster fun

For this problem we need both recursion types. An item
(roller coaster) is given by the three values ai , bi and ti

Case bi = 0 (unbounded knapsack):
dp[i][T] = max{dp[i − 1][T], dp[i][T − ti] + ai}

Case bi 6= 0 (0/1-knapsack?)
No!
⇒ split into Ji items, where the k-th item has a
profit (fun) of ai − (k − 1)2 · bi and weight (time) ti .
Ji is the largest index where the profit is positive.
Use 0/1-knapsack on those items!

GCPC 2012 Jury GCPC 2012 30.06.2012 10 / 18

Roller coaster fun

For this problem we need both recursion types. An item
(roller coaster) is given by the three values ai , bi and ti

Case bi = 0 (unbounded knapsack):
dp[i][T] = max{dp[i − 1][T], dp[i][T − ti] + ai}
Case bi 6= 0 (0/1-knapsack?)

No!
⇒ split into Ji items, where the k-th item has a
profit (fun) of ai − (k − 1)2 · bi and weight (time) ti .
Ji is the largest index where the profit is positive.
Use 0/1-knapsack on those items!

GCPC 2012 Jury GCPC 2012 30.06.2012 10 / 18

Roller coaster fun

For this problem we need both recursion types. An item
(roller coaster) is given by the three values ai , bi and ti

Case bi = 0 (unbounded knapsack):
dp[i][T] = max{dp[i − 1][T], dp[i][T − ti] + ai}
Case bi 6= 0 (0/1-knapsack?)
No!

⇒ split into Ji items, where the k-th item has a
profit (fun) of ai − (k − 1)2 · bi and weight (time) ti .
Ji is the largest index where the profit is positive.
Use 0/1-knapsack on those items!

GCPC 2012 Jury GCPC 2012 30.06.2012 10 / 18

Roller coaster fun

For this problem we need both recursion types. An item
(roller coaster) is given by the three values ai , bi and ti

Case bi = 0 (unbounded knapsack):
dp[i][T] = max{dp[i − 1][T], dp[i][T − ti] + ai}
Case bi 6= 0 (0/1-knapsack?)
No!
⇒ split into Ji items, where the k-th item has a
profit (fun) of ai − (k − 1)2 · bi and weight (time) ti .
Ji is the largest index where the profit is positive.

Use 0/1-knapsack on those items!

GCPC 2012 Jury GCPC 2012 30.06.2012 10 / 18

Roller coaster fun

For this problem we need both recursion types. An item
(roller coaster) is given by the three values ai , bi and ti

Case bi = 0 (unbounded knapsack):
dp[i][T] = max{dp[i − 1][T], dp[i][T − ti] + ai}
Case bi 6= 0 (0/1-knapsack?)
No!
⇒ split into Ji items, where the k-th item has a
profit (fun) of ai − (k − 1)2 · bi and weight (time) ti .
Ji is the largest index where the profit is positive.
Use 0/1-knapsack on those items!

GCPC 2012 Jury GCPC 2012 30.06.2012 10 / 18

Roller coaster fun

Time complexity:

Build table: O(N · Jmax · Tmax)

Query table entries: O(Q)

Only one testcase, Jmax ≤ 32
⇒ time complexity is sufficient

GCPC 2012 Jury GCPC 2012 30.06.2012 11 / 18

Roller coaster fun

Memory complexity:
Size of table: N · Jmax · Tmax ≈ 305MB

Idea:

Calculate table line by line

Only previous line necessary for calculation

Only last line is needed for the queries

 Memory: O(2 · Tmax) < 1MB

GCPC 2012 Jury GCPC 2012 30.06.2012 12 / 18

Roller coaster fun

Memory complexity:
Size of table: N · Jmax · Tmax ≈ 305MB
Idea:

Calculate table line by line

Only previous line necessary for calculation

Only last line is needed for the queries

 Memory: O(2 · Tmax) < 1MB

GCPC 2012 Jury GCPC 2012 30.06.2012 12 / 18

Roller coaster fun

Memory complexity:
Size of table: N · Jmax · Tmax ≈ 305MB
Idea:

Calculate table line by line

Only previous line necessary for calculation

Only last line is needed for the queries

 Memory: O(2 · Tmax) < 1MB

GCPC 2012 Jury GCPC 2012 30.06.2012 12 / 18

Ski Jumping

Find l
1 by solving for l → much math, paper and pencil

approach, O(1)
2 by binary search on l → easy too implement, O(log N)

GCPC 2012 Jury GCPC 2012 30.06.2012 13 / 18

Ski Jumping

Get landing speed |v |
vx = speed gained in approach, not changed during flight
vy = speed gained during flight (drop since approach)

GCPC 2012 Jury GCPC 2012 30.06.2012 13 / 18

Ski Jumping

Get landing angle
1 First derivatives of f and h yield slopes
2 Obtain slopes at landing point
3 Write slopes as vector and apply given equation
4 Convert rad to degree

GCPC 2012 Jury GCPC 2012 30.06.2012 13 / 18

Suffix Array RE-construction

Problem: Reconstruct a full string from a partial set
of suffixes

Straight forward task, special character ’*’ occurs
at most once per suffix
Fill in characters into output string, print
IMPOSSIBLE whenever a conflict occurs or
characters are missing

1 AStringW*Conflicts 1 AStringW

8 WithC*Licts

12 Conflicts

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A S t r i n g W i t h C o n f l i c t s

8 WithC
16 Licts

GCPC 2012 Jury GCPC 2012 30.06.2012 14 / 18

Suffix Array RE-construction

Problem: Reconstruct a full string from a partial set
of suffixes
Straight forward task, special character ’*’ occurs
at most once per suffix
Fill in characters into output string, print
IMPOSSIBLE whenever a conflict occurs or
characters are missing

1 AStringW*Conflicts 1 AStringW

8 WithC*Licts

12 Conflicts

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A S t r i n g W i t h C o n f l i c t s

8 WithC
16 Licts

GCPC 2012 Jury GCPC 2012 30.06.2012 14 / 18

Suffix Array RE-construction

Problem: Reconstruct a full string from a partial set
of suffixes
Straight forward task, special character ’*’ occurs
at most once per suffix
Fill in characters into output string, print
IMPOSSIBLE whenever a conflict occurs or
characters are missing

1 AStringW*Conflicts 1 AStringW

8 WithC*Licts

12 Conflicts

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A S t r i n g W i t h C o n f l i c t s

8 WithC
16 Licts

GCPC 2012 Jury GCPC 2012 30.06.2012 14 / 18

Suffix Array RE-construction

Problem: Reconstruct a full string from a partial set
of suffixes
Straight forward task, special character ’*’ occurs
at most once per suffix
Fill in characters into output string, print
IMPOSSIBLE whenever a conflict occurs or
characters are missing

1 AStringW*Conflicts 1 AStringW

8 WithC*Licts

12 Conflicts

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A S t r i n g W i t h C o n f l i c t s

8 WithC
16 Licts

GCPC 2012 Jury GCPC 2012 30.06.2012 14 / 18

Suffix Array RE-construction

Problem: Reconstruct a full string from a partial set
of suffixes
Straight forward task, special character ’*’ occurs
at most once per suffix
Fill in characters into output string, print
IMPOSSIBLE whenever a conflict occurs or
characters are missing

1 AStringW*Conflicts 1 AStringW

8 WithC*Licts

12 Conflicts

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A S t r i n g W i t h C o n f l i c t s

8 WithC
16 Licts

GCPC 2012 Jury GCPC 2012 30.06.2012 14 / 18

Touchscreen Keyboard

intended to be the easiest problem

calculate distance between letters:
string keys[3] = {"qwertyuiop","asdfghjkl","zxcvbnm"};

for(i,0..3) for(j,0..keys[i].size()) {

x[keys[i][j]] = i;

y[keys[i][j]] = j;

}

compute distance sums:
for(i,0..n) sum += abs(x[ref[i]]-x[cur[i]])

+ abs(y[ref[i]]-y[cur[i]]);

sort and print

GCPC 2012 Jury GCPC 2012 30.06.2012 15 / 18

Touchscreen Keyboard

intended to be the easiest problem
calculate distance between letters:
string keys[3] = {"qwertyuiop","asdfghjkl","zxcvbnm"};

for(i,0..3) for(j,0..keys[i].size()) {

x[keys[i][j]] = i;

y[keys[i][j]] = j;

}

compute distance sums:
for(i,0..n) sum += abs(x[ref[i]]-x[cur[i]])

+ abs(y[ref[i]]-y[cur[i]]);

sort and print

GCPC 2012 Jury GCPC 2012 30.06.2012 15 / 18

Touchscreen Keyboard

intended to be the easiest problem
calculate distance between letters:
string keys[3] = {"qwertyuiop","asdfghjkl","zxcvbnm"};

for(i,0..3) for(j,0..keys[i].size()) {

x[keys[i][j]] = i;

y[keys[i][j]] = j;

}

compute distance sums:
for(i,0..n) sum += abs(x[ref[i]]-x[cur[i]])

+ abs(y[ref[i]]-y[cur[i]]);

sort and print

GCPC 2012 Jury GCPC 2012 30.06.2012 15 / 18

Touchscreen Keyboard

intended to be the easiest problem
calculate distance between letters:
string keys[3] = {"qwertyuiop","asdfghjkl","zxcvbnm"};

for(i,0..3) for(j,0..keys[i].size()) {

x[keys[i][j]] = i;

y[keys[i][j]] = j;

}

compute distance sums:
for(i,0..n) sum += abs(x[ref[i]]-x[cur[i]])

+ abs(y[ref[i]]-y[cur[i]]);

sort and print

GCPC 2012 Jury GCPC 2012 30.06.2012 15 / 18

Track Smoothing

scale with f

f = track length−2rπ
track length

negative ⇒ “Not possible”

GCPC 2012 Jury GCPC 2012 30.06.2012 16 / 18

Track Smoothing

border with distance r

f = track length−2rπ
track length

negative ⇒ “Not possible”

GCPC 2012 Jury GCPC 2012 30.06.2012 16 / 18

Track Smoothing

f · track length

f = track length−2rπ
track length

negative ⇒ “Not possible”

GCPC 2012 Jury GCPC 2012 30.06.2012 16 / 18

Track Smoothing

f · track length + 2rπ

f = track length−2rπ
track length

negative ⇒ “Not possible”

GCPC 2012 Jury GCPC 2012 30.06.2012 16 / 18

Track Smoothing

f · track length + 2rπ = track length

f = track length−2rπ
track length

negative ⇒ “Not possible”

GCPC 2012 Jury GCPC 2012 30.06.2012 16 / 18

Track Smoothing

f · track length + 2rπ = track length

f = track length−2rπ
track length

negative ⇒ “Not possible”

GCPC 2012 Jury GCPC 2012 30.06.2012 16 / 18

Treasure Diving

Problem: decide how many Treasures a diver can
rescue from a cave network using a limited air
budget

Classical TSP instance, with a minor twist

The diver does not have to collect all treasures, only
maximal number possible
Two step approach

calculate distance table
(at most 8 Treasures + exit → 9x9 Table)
perform backtracking on table, recursing only if air
sufficient for the return

GCPC 2012 Jury GCPC 2012 30.06.2012 17 / 18

Treasure Diving

Problem: decide how many Treasures a diver can
rescue from a cave network using a limited air
budget

Classical TSP instance, with a minor twist

The diver does not have to collect all treasures, only
maximal number possible
Two step approach

calculate distance table
(at most 8 Treasures + exit → 9x9 Table)
perform backtracking on table, recursing only if air
sufficient for the return

GCPC 2012 Jury GCPC 2012 30.06.2012 17 / 18

Award Ceremony

GCPC 2012 Jury GCPC 2012 30.06.2012 18 / 18

