
German Collegiate
Programming Contest

GCPC Jury

gcpc-jury@nwerc.eu

12. Juni 2010

GCPC Jury German Collegiate Programming Contest 12. Juni 2010 1 / 20

jury sample solutions

Problem min. LOC max. LOC
Absurd prices 17 50
Cheating or Not 86 104
Counterattack 23 60
Field Plan 48 117
Hacking 35 81
Last Minute Constructions 86 167
Lineup 29 76
Polynomial Estimates 24 55
Soccer Bets 17 99
The Two-ball Game 64 86
To score or not to score 61 117∑

490 1012

GCPC Jury German Collegiate Programming Contest 12. Juni 2010 2 / 20

Absurd Prices

interval sizes are up to 107

brute force is too slow

idea: generate closest integer which has smaller
absurdity than c

must have either a 5 instead of its last non-zero
digit, or one more trailing zero.

check if the closest integer with smaller absurdity
lies in the intervall [0.95 · c , 1.05 · c]

Most common errors: Tried brute force or used
wrong bounds (e.g., rounding errors).

GCPC Jury German Collegiate Programming Contest 12. Juni 2010 3 / 20

Absurd Prices

interval sizes are up to 107

brute force is too slow

idea: generate closest integer which has smaller
absurdity than c

must have either a 5 instead of its last non-zero
digit, or one more trailing zero.

check if the closest integer with smaller absurdity
lies in the intervall [0.95 · c , 1.05 · c]

Most common errors: Tried brute force or used
wrong bounds (e.g., rounding errors).

GCPC Jury German Collegiate Programming Contest 12. Juni 2010 3 / 20

Absurd Prices

interval sizes are up to 107

brute force is too slow

idea: generate closest integer which has smaller
absurdity than c

must have either a 5 instead of its last non-zero
digit, or one more trailing zero.

check if the closest integer with smaller absurdity
lies in the intervall [0.95 · c , 1.05 · c]

Most common errors: Tried brute force or used
wrong bounds (e.g., rounding errors).

GCPC Jury German Collegiate Programming Contest 12. Juni 2010 3 / 20

Absurd Prices

interval sizes are up to 107

brute force is too slow

idea: generate closest integer which has smaller
absurdity than c

must have either a 5 instead of its last non-zero
digit, or one more trailing zero.

check if the closest integer with smaller absurdity
lies in the intervall [0.95 · c , 1.05 · c]

Most common errors: Tried brute force or used
wrong bounds (e.g., rounding errors).

GCPC Jury German Collegiate Programming Contest 12. Juni 2010 3 / 20

Absurd Prices

interval sizes are up to 107

brute force is too slow

idea: generate closest integer which has smaller
absurdity than c

must have either a 5 instead of its last non-zero
digit, or one more trailing zero.

check if the closest integer with smaller absurdity
lies in the intervall [0.95 · c , 1.05 · c]

Most common errors: Tried brute force or used
wrong bounds (e.g., rounding errors).

GCPC Jury German Collegiate Programming Contest 12. Juni 2010 3 / 20

Cheating or Not

Distribute g ·m teams evenly over g ≤ 8 groups.
First position per group fixed (host/seeded teams)
Other positions depend only on first position

⇒ No interdependencies between positions 2, 3, . . . , m!

Simple Solution
For position i = 2, 3, . . . , m:

Enumerate all configurations for the i -th positions.

Count how often each team is in each group.

P(team t in group k)= configurations with team t in group k
total number of configurations

Sum up team strengths weighted with probabilities.

Complexity: O(mg !g)

GCPC Jury German Collegiate Programming Contest 12. Juni 2010 4 / 20

Cheating or Not

Distribute g ·m teams evenly over g ≤ 8 groups.
First position per group fixed (host/seeded teams)
Other positions depend only on first position

⇒ No interdependencies between positions 2, 3, . . . , m!

Simple Solution
For position i = 2, 3, . . . , m:

Enumerate all configurations for the i -th positions.

Count how often each team is in each group.

P(team t in group k)= configurations with team t in group k
total number of configurations

Sum up team strengths weighted with probabilities.

Complexity: O(mg !g)
GCPC Jury German Collegiate Programming Contest 12. Juni 2010 4 / 20

Optimization
Consider two partial configurations.

If same teams are set, same completions are
possible.

! Completion does not depend on order of the teams
in the partial configuration.

⇒ Use Dynamic Programming!

Complexity: O(m2gg 2)

GCPC Jury German Collegiate Programming Contest 12. Juni 2010 5 / 20

Counter Attack

2n possibilities ⇒ naive computation is too slow

position bj ⇒ either pass from aj−1 or run from bj−1

recursion: bj =min(aj−1 + passa
j−1, bj−1 + runb

j−1)
(analogous for aj)

avoid duplicate computations by dynamic
programming

reduces complexity to Θ(n)

Most common error: Implemented Dijkstra in O(n2)
instead of DP or Dijkstra in O(n log n).

GCPC Jury German Collegiate Programming Contest 12. Juni 2010 6 / 20

Counter Attack

2n possibilities ⇒ naive computation is too slow

position bj ⇒ either pass from aj−1 or run from bj−1

recursion: bj =min(aj−1 + passa
j−1, bj−1 + runb

j−1)
(analogous for aj)

avoid duplicate computations by dynamic
programming

reduces complexity to Θ(n)

Most common error: Implemented Dijkstra in O(n2)
instead of DP or Dijkstra in O(n log n).

GCPC Jury German Collegiate Programming Contest 12. Juni 2010 6 / 20

Field Plan Solution Outline

Find strongly connected components with Tarjan’s
algorithm or algorithm of Aho, Hopcroft, Ullman

Consider DAG of strongly connected components

If this DAG has exactly one source (SCC with
indegree zero), print out the nodes of this SCC

if not, Yogi made a fault

Most common error: Didn’t use SCCs, tried n depth
first searches instead.

GCPC Jury German Collegiate Programming Contest 12. Juni 2010 7 / 20

Field Plan Solution Outline

Find strongly connected components with Tarjan’s
algorithm or algorithm of Aho, Hopcroft, Ullman

Consider DAG of strongly connected components

If this DAG has exactly one source (SCC with
indegree zero), print out the nodes of this SCC

if not, Yogi made a fault

Most common error: Didn’t use SCCs, tried n depth
first searches instead.

GCPC Jury German Collegiate Programming Contest 12. Juni 2010 7 / 20

Hacking

A text of length n can contain at most n −m + 1
different substrings of length m

But there exist km many strings of length m with
the first k letters of the alphabet

There must be a string of length
≤ log(n)/log(k) + 1 which does not occur in the
given string

Determine the first substring of length
l := blog(n)/log(k)c+ 1 which does not occur in
the string

Number of such substrings is ≤ n · k

GCPC Jury German Collegiate Programming Contest 12. Juni 2010 8 / 20

Hacking

A text of length n can contain at most n −m + 1
different substrings of length m

But there exist km many strings of length m with
the first k letters of the alphabet

There must be a string of length
≤ log(n)/log(k) + 1 which does not occur in the
given string

Determine the first substring of length
l := blog(n)/log(k)c+ 1 which does not occur in
the string

Number of such substrings is ≤ n · k

GCPC Jury German Collegiate Programming Contest 12. Juni 2010 8 / 20

Hacking

A text of length n can contain at most n −m + 1
different substrings of length m

But there exist km many strings of length m with
the first k letters of the alphabet

There must be a string of length
≤ log(n)/log(k) + 1 which does not occur in the
given string

Determine the first substring of length
l := blog(n)/log(k)c+ 1 which does not occur in
the string

Number of such substrings is ≤ n · k
GCPC Jury German Collegiate Programming Contest 12. Juni 2010 8 / 20

Hacking

Substrings can be seen as numbers in base k with l
digits

Use a boolean table of size k l to store which
substrings occur in the string

Use Rabin-Karp algorithm to determine in O(n) the
hash values of the substrings of length l which
occur in the string

Reconstruct substring from first hash value in the
table which did not occur in the string.

Most common error: Implementation too slow, e.g.
building a trie with all substrings of length m and
searching for strings not present.

GCPC Jury German Collegiate Programming Contest 12. Juni 2010 9 / 20

Hacking

Substrings can be seen as numbers in base k with l
digits

Use a boolean table of size k l to store which
substrings occur in the string

Use Rabin-Karp algorithm to determine in O(n) the
hash values of the substrings of length l which
occur in the string

Reconstruct substring from first hash value in the
table which did not occur in the string.

Most common error: Implementation too slow, e.g.
building a trie with all substrings of length m and
searching for strings not present.

GCPC Jury German Collegiate Programming Contest 12. Juni 2010 9 / 20

Hacking

Substrings can be seen as numbers in base k with l
digits

Use a boolean table of size k l to store which
substrings occur in the string

Use Rabin-Karp algorithm to determine in O(n) the
hash values of the substrings of length l which
occur in the string

Reconstruct substring from first hash value in the
table which did not occur in the string.

Most common error: Implementation too slow, e.g.
building a trie with all substrings of length m and
searching for strings not present.

GCPC Jury German Collegiate Programming Contest 12. Juni 2010 9 / 20

Hacking

Substrings can be seen as numbers in base k with l
digits

Use a boolean table of size k l to store which
substrings occur in the string

Use Rabin-Karp algorithm to determine in O(n) the
hash values of the substrings of length l which
occur in the string

Reconstruct substring from first hash value in the
table which did not occur in the string.

Most common error: Implementation too slow, e.g.
building a trie with all substrings of length m and
searching for strings not present.
GCPC Jury German Collegiate Programming Contest 12. Juni 2010 9 / 20

Last Minute Constructions

The input is a tree combined with a set of directed
edges and two distinct nodes, the source s and the
target t of a route.

Goal is to find a node-disjunct path from s to t
using all directed edges.

GCPC Jury German Collegiate Programming Contest 12. Juni 2010 10 / 20

Last Minute Constructions

The processing can be reduced to a path
construction using a depth-first-search.

Rooting the tree at t eliminates special treatment
for t during the processing.

Decide for every sub-tree if the path needs to enter
it or exit it. Use special treatment for s.

GCPC Jury German Collegiate Programming Contest 12. Juni 2010 11 / 20

Last Minute Constructions

The processing can be reduced to a path
construction using a depth-first-search.

Rooting the tree at t eliminates special treatment
for t during the processing.

Decide for every sub-tree if the path needs to enter
it or exit it. Use special treatment for s.

GCPC Jury German Collegiate Programming Contest 12. Juni 2010 11 / 20

Last Minute Constructions

The processing can be reduced to a path
construction using a depth-first-search.

Rooting the tree at t eliminates special treatment
for t during the processing.

Decide for every sub-tree if the path needs to enter
it or exit it. Use special treatment for s.

GCPC Jury German Collegiate Programming Contest 12. Juni 2010 11 / 20

Last Minute Constructions

To check whether all tunnels have been used follow
the constructed path.

GCPC Jury German Collegiate Programming Contest 12. Juni 2010 12 / 20

Lineup

Any player is proficient in at most 5 positions

⇒ there are at most 57 · 4! = 1 875 000 valid
positions

just do a brute-force search over all valid positions

Most common error: Computed
sum← sum + backtrack(pos + 1) but returned 0
for impossible solutions. This can result in higher
sums than for the correct solution.

GCPC Jury German Collegiate Programming Contest 12. Juni 2010 13 / 20

Lineup

Any player is proficient in at most 5 positions

⇒ there are at most 57 · 4! = 1 875 000 valid
positions

just do a brute-force search over all valid positions

Most common error: Computed
sum← sum + backtrack(pos + 1) but returned 0
for impossible solutions. This can result in higher
sums than for the correct solution.

GCPC Jury German Collegiate Programming Contest 12. Juni 2010 13 / 20

Lineup

Any player is proficient in at most 5 positions

⇒ there are at most 57 · 4! = 1 875 000 valid
positions

just do a brute-force search over all valid positions

Most common error: Computed
sum← sum + backtrack(pos + 1) but returned 0
for impossible solutions. This can result in higher
sums than for the correct solution.

GCPC Jury German Collegiate Programming Contest 12. Juni 2010 13 / 20

Polynomial Estimates

Always “YES” with 4 or less given values

Otherwise, compute coefficients and check values

Linear equations on paper. Solution:

a = 6x1

b = −11x1 +18x2 −9x3 +2x4

c = 6x1 −15x2 +12x3 −3x4

d = −x1 +3x2 −3x3 +x4

Then p(x) = (a + bx + cx2 + dx3)/6

GCPC Jury German Collegiate Programming Contest 12. Juni 2010 14 / 20

Polynomial Estimates

Always “YES” with 4 or less given values

Otherwise, compute coefficients and check values

Linear equations on paper. Solution:

a = 6x1

b = −11x1 +18x2 −9x3 +2x4

c = 6x1 −15x2 +12x3 −3x4

d = −x1 +3x2 −3x3 +x4

Then p(x) = (a + bx + cx2 + dx3)/6

GCPC Jury German Collegiate Programming Contest 12. Juni 2010 14 / 20

Polynomial Estimates

Always “YES” with 4 or less given values

Otherwise, compute coefficients and check values

Linear equations on paper. Solution:

a = 6x1

b = −11x1 +18x2 −9x3 +2x4

c = 6x1 −15x2 +12x3 −3x4

d = −x1 +3x2 −3x3 +x4

Then p(x) = (a + bx + cx2 + dx3)/6

GCPC Jury German Collegiate Programming Contest 12. Juni 2010 14 / 20

Polynomial Estimates

Always “YES” with 4 or less given values

Otherwise, compute coefficients and check values

Linear equations on paper. Solution:

a = 6x1

b = −11x1 +18x2 −9x3 +2x4

c = 6x1 −15x2 +12x3 −3x4

d = −x1 +3x2 −3x3 +x4

Then p(x) = (a + bx + cx2 + dx3)/6

GCPC Jury German Collegiate Programming Contest 12. Juni 2010 14 / 20

Polynomial Estimates

There is an easier way

3rd derivative of a degree 3 polynomial is constant

Similar idea: Differences

Given xi , compute x ′i = xi+1 − xi

Iterate

Check if x ′′′1 = x ′′′2 = · · · = x ′′′n−3

Most common errors: Forgot to read xi if n ≤ 4 or
used wrong solution for the linear equations system.

GCPC Jury German Collegiate Programming Contest 12. Juni 2010 15 / 20

Polynomial Estimates

There is an easier way

3rd derivative of a degree 3 polynomial is constant

Similar idea: Differences

Given xi , compute x ′i = xi+1 − xi

Iterate

Check if x ′′′1 = x ′′′2 = · · · = x ′′′n−3

Most common errors: Forgot to read xi if n ≤ 4 or
used wrong solution for the linear equations system.

GCPC Jury German Collegiate Programming Contest 12. Juni 2010 15 / 20

Polynomial Estimates

There is an easier way

3rd derivative of a degree 3 polynomial is constant

Similar idea: Differences

Given xi , compute x ′i = xi+1 − xi

Iterate

Check if x ′′′1 = x ′′′2 = · · · = x ′′′n−3

Most common errors: Forgot to read xi if n ≤ 4 or
used wrong solution for the linear equations system.

GCPC Jury German Collegiate Programming Contest 12. Juni 2010 15 / 20

Polynomial Estimates

There is an easier way

3rd derivative of a degree 3 polynomial is constant

Similar idea: Differences

Given xi , compute x ′i = xi+1 − xi

Iterate

Check if x ′′′1 = x ′′′2 = · · · = x ′′′n−3

Most common errors: Forgot to read xi if n ≤ 4 or
used wrong solution for the linear equations system.

GCPC Jury German Collegiate Programming Contest 12. Juni 2010 15 / 20

Polynomial Estimates

There is an easier way

3rd derivative of a degree 3 polynomial is constant

Similar idea: Differences

Given xi , compute x ′i = xi+1 − xi

Iterate

Check if x ′′′1 = x ′′′2 = · · · = x ′′′n−3

Most common errors: Forgot to read xi if n ≤ 4 or
used wrong solution for the linear equations system.

GCPC Jury German Collegiate Programming Contest 12. Juni 2010 15 / 20

Polynomial Estimates

There is an easier way

3rd derivative of a degree 3 polynomial is constant

Similar idea: Differences

Given xi , compute x ′i = xi+1 − xi

Iterate

Check if x ′′′1 = x ′′′2 = · · · = x ′′′n−3

Most common errors: Forgot to read xi if n ≤ 4 or
used wrong solution for the linear equations system.

GCPC Jury German Collegiate Programming Contest 12. Juni 2010 15 / 20

Polynomial Estimates

There is an easier way

3rd derivative of a degree 3 polynomial is constant

Similar idea: Differences

Given xi , compute x ′i = xi+1 − xi

Iterate

Check if x ′′′1 = x ′′′2 = · · · = x ′′′n−3

Most common errors: Forgot to read xi if n ≤ 4 or
used wrong solution for the linear equations system.

GCPC Jury German Collegiate Programming Contest 12. Juni 2010 15 / 20

Soccer Bets

No Brainer

World Champion ⇔ won all matches

Most common error: Forgot to reset data structures
between test cases.

GCPC Jury German Collegiate Programming Contest 12. Juni 2010 16 / 20

Soccer Bets

No Brainer

World Champion ⇔ won all matches

Most common error: Forgot to reset data structures
between test cases.

GCPC Jury German Collegiate Programming Contest 12. Juni 2010 16 / 20

The Two-ball Game

testing all possible paths s1 t1 and s2 t2 is too
slow

idea:

GCPC Jury German Collegiate Programming Contest 12. Juni 2010 17 / 20

The Two-ball Game

testing all possible paths s1 t1 and s2 t2 is too
slow

idea:

GCPC Jury German Collegiate Programming Contest 12. Juni 2010 17 / 20

The Two-ball Game

solution:
compute the convex hull H as a list of its vertices
ordered along its boundary clockwise (or
counterclockwise)
answer IMPOSSIBLE if s1, t1, s2, t2 ∈ H and the points
alternate on H like e.g. ...s1...s2...t1...t2... or
...s2...t1...t2...s1..., etc.

time complexity: O(n log n)

GCPC Jury German Collegiate Programming Contest 12. Juni 2010 18 / 20

To Score Or Not To Score

Directed graph
Edge existence depends on distance to next
opponent player

Computing e.g. with Line2D.ptSegDist(opponent) in
Java
Each edge needs to be checked with each opponent

Compute either max-flow between player with ball
and goal

If flow ≥ 2 goal is possible

Or make repeated DFS from source to target, each
time ignoring one other player of the playing team

If goal is not reachable in one case, no goal is possible

GCPC Jury German Collegiate Programming Contest 12. Juni 2010 19 / 20

To Score Or Not To Score

Directed graph
Edge existence depends on distance to next
opponent player

Computing e.g. with Line2D.ptSegDist(opponent) in
Java
Each edge needs to be checked with each opponent

Compute either max-flow between player with ball
and goal

If flow ≥ 2 goal is possible

Or make repeated DFS from source to target, each
time ignoring one other player of the playing team

If goal is not reachable in one case, no goal is possible

GCPC Jury German Collegiate Programming Contest 12. Juni 2010 19 / 20

Award Ceremony

GCPC Jury German Collegiate Programming Contest 12. Juni 2010 20 / 20

