
Problem B: Balance by Elimination 1

B Balance by Elimination Time limit: 3s

CC-BY 2.0 By Floyd Wilde on Flickr
Unidentified bright green tree

You are given a binary tree with n nodes. The nodes are conve-
niently numbered from 1 to n. Node 1 is the root of the binary
tree.

The height of the subtree rooted at node u is:

hu = 1 + max (hleft child, hright child)

If a left or right child doesn’t exist, its subtree height is defined
to be 0. In particular, if a node is a leaf, it has a height of 1.

You want the tree to become height-balanced. A node is height-balanced if:

|hleft child − hright child| < 2

A binary tree is height-balanced if all its nodes are height-balanced.

Find a way to remove at most 1 leaf from the tree, such that the binary tree becomes height-
balanced, or output that this is impossible. For example, the tree of the second sample input
(visualized in Figure B.1) becomes balanced when removing node 5.

Input

The input consists of:

• One line containing a single integer n (1 ≤ n ≤ 105), the number of nodes in the binary
tree.

• Then n lines follow, numbered from 1 to n. The ith line contains two integers, the labels
of the left and right child of node i.

If a left child or right child does not exist, the corresponding integer is equal to 0. It is
guaranteed that the input graph is a binary tree.

Output

Output a single integer:

• If the tree is already balanced, output “balanced”.

• If it’s impossible to make the tree height-balanced, output “impossible”.

• Else, output the number of the leaf you want to remove.

2 Problem B: Balance by Elimination

1

2 3

4

5

Figure B.1: Visualization of Sample Input 2.

Sample Input 1 Sample Output 1
4
4 2
0 0
0 0
0 3

balanced

Sample Input 2 Sample Output 2
5
2 3
0 0
0 4
0 5
0 0

5

Sample Input 3 Sample Output 3
4
2 0
3 0
4 0
0 0

impossible

	Balance by Elimination

