
BAPC 2020 Preliminaries
Solutions presentation

November 14, 2020

BAPC 2020 Preliminaries November 14, 2020 1 / 22



A: Adversarial Memory
Problem Author: Mike de Vries and Ragnar Groot Koerkamp

Problem: given that you can choose the cards, make Charlie’s game of memory
last as long as possible: at least 2n − 1 turns.
Keep track of which places already have an assigned card (in case the same card
is picked), which cards you have shown once so far, and which cards you have not
shown at all.
Postpone Charlie making pairs as long as possible.
For the first card that Charlie chooses:

Show him a card he has never seen before (unless the card is already fixed).
Once all card values have been shown at least once, choose them a second time.

For the second card that Charlie chooses:
Show him a card that he has already seen earlier, if this doesn’t give him a pair.
Else, show him a card he’s never seen before, if possible.
Else, just give him the pair.

Googling Adversarial Memory, the first hit gives the solution.
BAPC 2020 Preliminaries November 14, 2020 2 / 22



B: Binary Seating
Problem Author: Pim Spelier

Problem: find the expected length of the exam, given the time it takes for each
student to finish the exam
Compute the average of max(S) over all subsets S ⊆ {t1, . . . , tn}.
Too slow: try all subsets: runs in O(n2n).
First sort the input: t1 ≥ t2 . . . ≥ tn.
With 50% chance student 1 is in your room, and you have to wait t1 time no
matter what.
If not, then with 50% chance you have student 2, and you have to wait t2 time.
Etc...

Solution = 1
2 t1 + 1

4 t2 + · · ·+ 1
2n tn.

Runtime: O(n log(n)) for sorting.

BAPC 2020 Preliminaries November 14, 2020 3 / 22



C: Cutting Corners
Problem Author: Mike de Vries

Problem: given a w by h rectangle, how much shorter is the diagonal than w + h?
Plain old Pythagoras should do the trick.
Print w + h −

√
w2 + h2 with sufficiently many digits.

BAPC 2020 Preliminaries November 14, 2020 4 / 22



D: Ducky Debugging
Problem Author: Mike de Vries

Problem: help Bob debug his solution by imitating a rubber duck!
Check the last character of every input line:

Is it a period (“.”)? Print “*nod*”
Is it a question (“?”)? Print “Quack!”
Is it an exclamation (“!”)? Exit program.

Pitfall: Forgetting to flush output stream.

BAPC 2020 Preliminaries November 14, 2020 5 / 22



E: Eightgon
Problem Author: Mike de Vries; Timon Knigge

Problem: how many regular, axis-aligned 8-gons can you construct from a given
set of n lattice points?

0 1 2 3 4

0

1

2

3

4

BAPC 2020 Preliminaries November 14, 2020 6 / 22



E: Eightgon
Problem Author: Mike de Vries; Timon Knigge

Problem: how many regular, axis-aligned 8-gons can you construct from a given
set of n lattice points.
Observation: can calculate all the number of ways to construct a partial octagon,
starting from the top right, going anti-clockwise), keeping track of

Where you started (n possibilities)
Where you are now (n possibilities)
How many pieces you’ve used already (8 possibilities)

These numbers have a recursive relation: dp[a][c][k + 1] =
∑

b dp[a][b][k] where
the sum is over all c that are on the correct ray when viewed from b.
For example: dp[a][c][1] = 1 iff the c’th point is on the ray going left from a.
Can do a DP, with runtime 8n3: TLE!.

a

b1

c
b2

BAPC 2020 Preliminaries November 14, 2020 7 / 22



E: Eightgon
Problem Author: Mike de Vries; Timon Knigge

Problem: how many regular, axis-aligned 8-gons can you construct from a given
set of n lattice points.
Second observation: can do the calculation dp[a][c][k + 1] =

∑
b dp[a][b][k] for

all c at once!
Reason: dp[a][c][k] counts for all b on the ray from c.
So: for each of the 8 possible directions, group the points by which line they lie
on, and sort the points on each line.
Then: for dp[a][·][k + 1], go through every line, and go through all of their points
in order.
Complexity: 8n log n for initial sorting and 8n2 for the DP.

c1 c2 c3 c4 c5 c6 c7 c8 b

BAPC 2020 Preliminaries November 14, 2020 8 / 22



F: Figure Skating
Problem Author: Timon Knigge

Problem: find the contestant who rose the most places between predicted and
final scoreboard.
Loop over all contestants, keeping track of which contestant so far has the highest
improvement.
Also keep track of which position they ended up in, to break ties if necessary.

BAPC 2020 Preliminaries November 14, 2020 9 / 22



G: Group Project
Problem Author: Ragnar Groot Koerkamp; Timon Knigge

Make as many pairs out of a group of N people, when they are split between
groups A, B, and some mixed A− B pairs are not allowed.

If at least one group has an even
number of people, make pairs
within the groups:

⌊n
2
⌋

pairs,
which is optimal.
If both groups have an odd
number of people, try to make one
mixed pair, and the rest within
the groups: in total n

2 pairs.
Only case where you cannot get⌊n

2
⌋

pairs is two odd groups, where
all of A connects to all of B.

1

2

3

4

5

6

7

8

9

A
B

BAPC 2020 Preliminaries November 14, 2020 10 / 22



G: Group Project
Problem Author: Ragnar Groot Koerkamp; Timon Knigge

How do you find out whether you have two odd-sized groups where every mixed pair is
incompatible?

Find the bipartite components with a graph traversal like BFS/DFS.
Count the degrees: if

K nodes have degree N − K ,
N − K nodes have degree K ,
and both K and N − K are odd,

you are in this situation.
Special case: A and B have the same size, and every node has odd degree N/2.

BAPC 2020 Preliminaries November 14, 2020 11 / 22



H: Human Pyramid
Problem Author: Ludo Pulles

Problem: in how many ways can we make a pyramid of height h with s strong
people?
Definitely a DP problem.
Don’t take horizontal layers, instead do diagonals!
A diagonal consists of some strong people (possibly zero), and then some agile
people (again, possibly zero) on top of them
The ith diagonal can have at most one more strong person than the i − 1th
diagonal has.
Let dp[i ][j][k] be the number of ways to make a pyramid of height i with j strong
people placed, and k the number of strong people in the current diogonal. Then

dp[i ][j][k] =
i∑

l=k−1
dp[i − 1][j − k][l ].

The answer is
∑h

k=0 dp[h][s][k].
However, this gives an O(H5) algorithm: too slow!BAPC 2020 Preliminaries November 14, 2020 12 / 22



H: Human Pyramid
Problem Author: Ludo Pulles

You can solve this by slightly changing the dp array: let dp[i ][j][k] be the number
of ways to make a pyramid of height i with j strong people placed, and at least k
strong people in the current diagonal.
Now

dp[i ][j][k] = dp[i ][j][k + 1] + dp[i − 1][j − k][k − 1]

because there are either at least k + 1 strong people in the current diagonal, or
there are exactly k
In the second case, we know that in the other diagonals there are precisely j − k
strong people, and the i − 1th needs at least k − 1 strong people to support the
ith diagonal.
The answer is dp[h][s][0], with runtime O(H4).

BAPC 2020 Preliminaries November 14, 2020 13 / 22



I: In-place Sorting
Problem Author: Timon Knigge

Problem: sort a list by flipping 6s and 9s.
Go through the list one by one.
If the current number cannot be made greater than the previous number, print
“impossible”.
By flipping 6s and 9s, make the number as small as possible, but greater than the
previous number.
One possible strategy, assuming both numbers have same number of digits:

In the current number: replace all 6s with 9s.
From left to right, replace 9 by 6 if this does not make the current number smaller
than the previous.

If the new number has more digits than the previous number, replace all 9s with
6s.

BAPC 2020 Preliminaries November 14, 2020 14 / 22



J: Jam-packed
Problem Author: Jorke de Vlas

Problem: distribute n jars over boxes (with capacity k) so that the box with the
fewest jars is as full as possible.
Idea: use the lowest number of boxes possible, which is

#boxes =
⌈n

k

⌉
.

The average number of jars in a box is n divided by the number of boxes, hence
the emptiest box will have at most

x =
⌊ n

#boxes

⌋
jars. We can achieve this by filling (n mod k) boxes with x + 1 jars and the rest
with x jars.

BAPC 2020 Preliminaries November 14, 2020 15 / 22



K: Kangaroo Commotion
Problem Author: Abe Wits

Problem: Given a grid with k + 2 locations in it, and some blocked cells, jump in order
to each location, where the absolute value of the acceleration between consecutive
jumps is at most 1 in the x and y direction.

Figure: First sample input

BAPC 2020 Preliminaries November 14, 2020 16 / 22



K: Kangaroo Commotion
Problem Author: Abe Wits

Problem: Given a grid with k + 2 locations in it, and some blocked cells, jump in order
to each location, where the absolute value of the acceleration between consecutive
jumps is at most 1 in the x and y direction.

Figure: First sample input
BAPC 2020 Preliminaries November 14, 2020 16 / 22



K: Kangaroo Commotion
Problem Author: Abe Wits

Use BFS with state (position, velocity, next location).
The number of positions is r · c ≤ 502 = 2 500.
Velocity has −50 ≤ vx , yy ≤ 50, so this gives 1012 states.
There are k + 1 ≤ 6 possibilities for the next location to be visited.
The total number of states is:

(r · c) · (2r + 1)(2c + 1) · (k + 1) ≤ 153 015 000

From each state, we can go to (up to) 9 other states.
Trying all 9 · 153 015 000 = 1 377 135 000 state transitions would give TLE, and
storing all states may need too much memory.

BAPC 2020 Preliminaries November 14, 2020 17 / 22



K: Kangaroo Commotion
Problem Author: Abe Wits

Observation: as acceleration is limited, maximum speed is limited. In particular,
when accelarating vx = 0 to vx = vmax and decelerating back to vx = 0, one
moves at least

1 + 2 + · · ·+ (vmax − 1) + vmax + (vmax − 1) + · · ·+ 1 = v2
max

steps in the x -direction. So vmax ≤ 7.
The number of states goes down to

(r · c) · (2 · 7 + 1)2 · (k + 1) ≤ 3 375 000.

We can easily visit all states and state transitions within the time bound.

BAPC 2020 Preliminaries November 14, 2020 18 / 22



K: Kangaroo Commotion
Problem Author: Abe Wits

Several secret test-cases. Number of steps needed on the right: 2649.

BAPC 2020 Preliminaries November 14, 2020 19 / 22



Some stats

1045 commits: up from 400 last year
356 secret testcases
221 jury solutions
The number of lines the jury needed to solve all problems is

18 + 2 + 3 + 5 + 27 + 4 + 15 + 13 + 19 + 1 + 46 = 153

On average 13.9 lines per problem, up from 12.3 last year!

BAPC 2020 Preliminaries November 14, 2020 20 / 22



The Proofreaders

Erik Baalhuis
Nicky Gerritsen
Rafael Kiesel
Shane Minnema
Michael Vasseur
Kevin Verbeek
Mees Vermeulen

BAPC 2020 Preliminaries November 14, 2020 21 / 22



The Jury

Ruben Brokkelkamp
Daan van Gent
Ragnar Groot Koerkamp
Joey Haas
Freek Henstra
Boas Kluiving
Timon Knigge
Ludo Pulles
Maarten Sijm
Harry Smit
Pim Spelier
Jorke de Vlas
Mees de Vries
Mike de Vries
Wessel van Woerden

BAPC 2020 Preliminaries November 14, 2020 22 / 22


