Canyon paths: Analysis

The core of the problem is finding a “shortest” path in the grid. However, there
are two extra challenges: First, instead of adding the values of each cell visited
on the path to get the total distance of the path, we take the minimum of all
those values. Together with this, we want to maximize instead of minimize the
resulting value. Second, we have the option to ignore a number of grid cells
when calculating its length.

The intended solution works around these challenges by reversing the prob-
lem. Instead of asking “what is the highest path value possible”, we find the
answer to the question “is there a path using at most K bridges whose minimal
height is at least H”. It then uses binary search on H to find the required
answer.

The question “is there a path using at most K bridges whose minimal height
is at least H” is intended to be answered through a modified breath first search.
Start a breath first search from the top edge, adding adjacent grid cells that are
high enough (> H) to the work queue, and the remaining adjacent grid cells
to a next queue. In the next iteration, initialize the work queue using the next
queue from the previous iteration.

Doing this for K + 1 iterations, one can calculate all grid cells that can be
reached with a path of minimum height above H containing at most K bridges.
If one of the cells reached is in the lowest row, there is a path spanning the
canyon.

Using the above algorithm, each question “is there a path using at most K
bridges whose minimal height is at least H” takes O(RC) to answer. The binary
search then takes O(RC log(Hmax))-

Partial solutions

First, consider the case where K = 0. Here, the problem reduces to finding
a shortest path with a somewhat strange metric. Dijkstra’s algorithm can be
adapted to work for this.

A solution using Dijkstra’s algorithm can be extended to testcases with small
values for K, using graph duplication. We construct K + 1 copies of the graph,
one for each of the possible number of bridges already used. Edges between the
layers then have “infinite” height, and need to be directed. The “shortest” path
in this duplicated graph then gives the required solution in O(K RC'log(K RC)).

Finally, a solution might do a binary search on the height of the lowest path,
but instead of using depth first search to check for existence, use Dijkstra’s algo-
rithm for that purpose. This gives a complexity of O(RC log(Hmax) log(RC)),
combined with a somewhat larger execution constant making it infeasible.

Suggested grading

Based on the above suggested solution and partial solutions, the following could
be a reasonable distribution of points into subtasks:



20 points worth of testcases with K = 0. (Intended to accept Dijkstra-
based solutions without graph duplication)

30 points worth of testcases with R < 100 and C' < 100. (Intended to
accept Dijkstra-based solutions with graph duplication

30 points worth of testcases with only C' < 100. (Intended to accept
solutions that fail to optimize to a linear time breath-first-search)

20 points worth of testcases with no restrictions.

Aditionally, for R = 1 the problem reduces to finding the maximum value
of the grid cells, which is relatively trivial to solve. It could, depending on the
total problem set, be an option to take out 5 to 10 points from the first and or
second subtask to create a subtask with R = 1.



