
BAPC 2020
Solutions presentation

December 12, 2020

BAPC 2020 December 12, 2020 1 / 41

A: Aquarium Arrangement
Problem Author: Freek Henstra

Problem: how long does it take to move piranhas to the correct positions by
luring them with your finger?
Piranhas cannot pass each other, so we know where each piranha needs to end up.
Denote by ai the number of positions piranha i needs to move to the right
(negative if the piranha needs to move to the left.)
There are k + 1 intervals between piranhas or between a piranha and a wall.

1 2 3 4

BAPC 2020 December 12, 2020 2 / 41

A: Aquarium Arrangement
Problem Author: Freek Henstra

If we spend x seconds in interval 1,
we need to spend x + a1 seconds in interval 2,
we need to spend x +

∑j−1
i=1 ai seconds in interval j .

Pick x as small as possible such that all these values are non-negative.
Claim: it is possible with minimal x iff it is possible.

Spending 1 second in each interval is equivalent to doing nothing.
In a solution where x is not minimal, we can skip the first second in each interval.
Consider a step from the original solution in an interval i that is not skipped.
Suppose we have spent a seconds in interval i − 1, b in i and c in i + 1.
In new solution, we have spent ≥ a − 1 in i − 1, b − 1 in i and ≥ c − 1 in i + 1.
This is equivalent to having spent ≥ a in i − 1, b in i and ≥ c in i + 1.
Hence the step is still possible, if not easier, in the new solution.

Each |ai | ≤ n, so the number of seconds per interval is O(nk), total is O(nk2).

BAPC 2020 December 12, 2020 3 / 41

A: Aquarium Arrangement
Problem Author: Freek Henstra

To test whether it is possible, simulate until you are done or stuck.
The order of steps does not matter: steps cannot make other steps impossible.
Put your finger in the leftmost required interval.
The new leftmost required interval is at most one position to the left.
We move k more positions to the right than to the left.
Total time complexity is O(nk2) amortized.
Seems too large, but large k makes the problem easier and the constant is small.
Simulation without precomputing the seconds per interval is also possible.

If a piranha needs to move left but cannot, recursively move piranhas left of it left.
For the right, replace left with right in the above statement.
Repeatedly loop through piranhas moving them left/right until done or stuck.
Finding the next step can take long, but in total still O(nk2) amortized.

Statistics: 44 submissions, 3 accepted, 27 unknown
BAPC 2020 December 12, 2020 4 / 41

B: Balanced Breakdown
Problem Author: Ludo Pulles and Mike de Vries

Problem: write a number as sum of ≤ 10 ‘balanced’ (palindrome) numbers.

Idea: construct the biggest balanced number less than n greedily.
Example:

n = 970 894 988 875 162 603
p1 = 970 894 987 789 498 079

n − p1 = 000 000 001 085 664 524

p2 = 000 000 001 085 555 801
n − p1 − p2 = 000 000 000 000 108 723

. . . .

BAPC 2020 December 12, 2020 5 / 41

B: Balanced Breakdown
Problem Author: Ludo Pulles and Mike de Vries

Problem: write a number as sum of ≤ 10 ‘balanced’ (palindrome) numbers.
Idea: construct the biggest balanced number less than n greedily.
Example:

n = 970 894 988 875 162 603
p1 = 970 894 987 789 498 079

n − p1 = 000 000 001 085 664 524

p2 = 000 000 001 085 555 801
n − p1 − p2 = 000 000 000 000 108 723

. . . .

BAPC 2020 December 12, 2020 5 / 41

B: Balanced Breakdown
Problem Author: Ludo Pulles and Mike de Vries

Possible edge case: n = 10`: p = n − 1.

To get k ≤ 5: run a brute force to express n as sum of three balanced numbers
when n ≤ 200 000.

Statistics: 192 submissions, 40 accepted, 59 unknown

BAPC 2020 December 12, 2020 6 / 41

B: Balanced Breakdown
Problem Author: Ludo Pulles and Mike de Vries

Possible edge case: n = 10`: p = n − 1.
To get k ≤ 5: run a brute force to express n as sum of three balanced numbers
when n ≤ 200 000.

Statistics: 192 submissions, 40 accepted, 59 unknown

BAPC 2020 December 12, 2020 6 / 41

C: Corrupted Contest
Problem Author: Boas Kluiving

Given only the time penalties of a valid scoreboard and the total number of
problems, can you reconstruct the scoreboard uniquely?
Idea: starting at the last team fill in the corrupted column conservatively.
The last team solved pn = 1 problem.
For i = n − 1, . . . , 1

pi =
{

pi+1, if ti ≤ ti+1

pi+1 + 1, else.

If p1 = p, then the scoreboard is non-ambiguous.
Else p1 := p gives a different correct scoreboard, so ambiguous.
Note: a team has a time penalty of 0 if and only if they solved 0 problems.
Solution: O(n).

BAPC 2020 December 12, 2020 7 / 41

Two important edge cases:
It could be that all participants have solved at least 1 problem.

4 3

40 3

30 ⇒ 2

10 1

20 1

If every participant has solved 0 problems, the scoreboard is unambiguous.

3 10

0 0

0 ⇒ 0

0 0

Statistics: 292 submissions, 78 accepted, 8 unknown
BAPC 2020 December 12, 2020 8 / 41

D: Destabilized Drone
Problem Author: Ragnar Groot Koerkamp

Given a w × h grid and a line going through at least two of the points, find it by
querying whether points are above, below, or on the line, using at most 900
queries.

BAPC 2020 December 12, 2020 9 / 41

Figure: Generalized Convex Hull: very few queries, but difficult to implement (< 120 queries)

BAPC 2020 December 12, 2020 10 / 41

D: Destabilized Drone
Problem Author: Ragnar Groot Koerkamp

Easier solution: Binary search on the left and right edge, using 2 · log2 1000 ≈ 20
queries.
This leaves a slice of at most 1000 points that must contain the line.
Querying all 1000 points in (randomized) order uses too many queries!

BAPC 2020 December 12, 2020 11 / 41

Figure: Binary search + linear scan: WA on large cases (> 900 queries worst case)

BAPC 2020 December 12, 2020 12 / 41

Figure: Binary search + per column: WA on large cases (> 900 queries worst case)

BAPC 2020 December 12, 2020 13 / 41

D: Destabilized Drone
Problem Author: Ragnar Groot Koerkamp

Solution: When P lies above the line, discard any points that lie between P and
the upper edge of the slice. And similar for points below the line.

Statistics: 104 submissions, 7 accepted, 52 unknown

BAPC 2020 December 12, 2020 14 / 41

Figure: Binary search + pruning + linear scan: AC (< 800 queries)

BAPC 2020 December 12, 2020 15 / 41

Figure: Binary search + pruning + randomized: AC (< 200 queries)

BAPC 2020 December 12, 2020 16 / 41

Figure: Binary search + linear scan from left and right: AC (2/3 · n + 20 queries)

BAPC 2020 December 12, 2020 17 / 41

E: Efficiently Elevated
Problem Author: Mees de Vries

Problem:
Build the least number of elevators so that all buildings become accessible.
Need to count ‘local maxima’ in the floor plan, but only count each maximum
once!

One possible solution:
Sort all locations in the grid by height (descending).
In the sorted order go through the locations:

If the location is marked ‘done’, skip it.
Do a flood fill/BFS/DFS from that location to all lower/equal location, and mark all
those locations ‘done’.

Output the number of flood fills needed.

Statistics: 232 submissions, 46 accepted, 64 unknown

BAPC 2020 December 12, 2020 18 / 41

F: Family Fares
Problem Author: Boas Kluiving

Problem : From which station to buy the group ticket, so that the sum of the
tickets is minimal. NB: you don’t have to buy a group ticket.

1

2

3

4

5
x

6 7
xx

8
x

10

20

15

30

15

10

10

10

50

2010

BAPC 2020 December 12, 2020 19 / 41

F: Family Fares
Problem Author: Boas Kluiving

Step 1: Compute shortest path DAG starting in Delft (station 1).

Step 2: Compute total cost of tickets without a group ticket.

1

2

3

4

5
x

6 7
xx

8
x

10

20

15

30

15

10

10

10

50

2010

BAPC 2020 December 12, 2020 20 / 41

F: Family Fares
Problem Author: Boas Kluiving

Step 1: Compute shortest path DAG starting in Delft (station 1).
Step 2: Compute total cost of tickets without a group ticket.

1

2

3

4

5
x

6 7
xx

8
x

10

20

15

30

15

10

10

10

50

2010

BAPC 2020 December 12, 2020 20 / 41

F: Family Fares
Problem Author: Boas Kluiving

Step 3: For every family member mark all stations which are on shortest paths
from starting point to Delft.

Step 3 (for higher p): Do this in one sweep by having a bitset at every station.

1
xxxx

2
xxx

3

4
xxx

5
x

6
xx

7
xx

8
x

10

20

15

30

15

10

10

10

50

2010

BAPC 2020 December 12, 2020 21 / 41

F: Family Fares
Problem Author: Boas Kluiving

Step 3: For every family member mark all stations which are on shortest paths
from starting point to Delft.
Step 3 (for higher p): Do this in one sweep by having a bitset at every station.

1
xxxx

2
xxx

3

4
xxx

5
x

6
xx

7
xx

8
x

10

20

15

30

15

10

10

10

50

2010

BAPC 2020 December 12, 2020 21 / 41

F: Family Fares
Problem Author: Boas Kluiving

Step 4: Loop over all stations and compute savings when buying group ticket at
that station.

1
xxxx

2
xxx

3

4
xxx

5
x

6
xx

7
xx

8
x

10

20

15

30

15

10

10

10

50

2010

Statistics: 69 submissions, 13 accepted, 39 unknown
BAPC 2020 December 12, 2020 22 / 41

G: Generator Grid
Problem Author: Timon Knigge

Problem: given a weighted cycle, pick some edges and vertices such that each vertex is
connected to a marked vertex via a path.

a1

a2

a3

a4

a5

b1

b2

b3

b4

b5

→ a1

a3 b1

b3

b5

BAPC 2020 December 12, 2020 23 / 41

G: Generator Grid
Problem Author: Timon Knigge

Idea: Add a central node for the concept of ‘power’:

a1

a2

a3

a4

a5

b1

b2

b3

b4

b5

→
b1

b2

b3

b4

b5

a1

a2a3

a4 a5

BAPC 2020 December 12, 2020 24 / 41

G: Generator Grid
Problem Author: Timon Knigge

Now we just want to find the cheapest way to connect each vertex to the central node.
But this is a classical minimum spanning tree problem → O(n log n).

a1

a2

a3

a4

a5

b1

b2

b3

b4

b5

→
b1

b3

b5

a1

a3

Note: this works for any graph G , not just cycles!
Statistics: 137 submissions, 28 accepted, 33 unknownBAPC 2020 December 12, 2020 25 / 41

H: Hungry Henk
Problem Author: Pim Spelier, Mike de Vries, and Ragnar Groot
Koerkamp

Problem: help Henk by recommending him exactly one complete meal.
Given: a list of complete meals, any of which would suffice.
Solution: just choose any of them!

Python one-liner: print((input(), input())[1])

Kotlin one-liner: print(Pair(readLine(), readLine()).second!!)

Brainfuck one-liner: ,,>>+[++++++++++>,----------]<[<]>>[.>]

Statistics: 101 submissions, 86 accepted, 0 unknown

BAPC 2020 December 12, 2020 26 / 41

I: Incomplete Implementation
Problem Author: Jorke de Vlas

Problem: sort an array by sorting half of it three times.

3 8 4 7 1 5 2 6

Figure: Unsorted array of the first sample

Statistics: 132 submissions, 30 accepted, 41 unknown

BAPC 2020 December 12, 2020 27 / 41

I: Incomplete Implementation
Problem Author: Jorke de Vlas

Idea: in the first step, make sure that the first quarter is sorted.
In the second step, make sure that the second quarter is sorted.
In the final step, sort the remaining numbers.

BAPC 2020 December 12, 2020 28 / 41

I: Incomplete Implementation
Problem Author: Jorke de Vlas

First step: making sure that the first quarter is sorted.
Choose the first n/4 positions and the positions of the first n/4 numbers.
This forces the first n/4 numbers into the first n/4 positions.

3 8 4 7 1 5 2 6 =⇒ 1 2 4 7 3 5 8 6
↓ ↑

3 8 1 2 −→ 1 2 3 8

Figure: First sorting step

BAPC 2020 December 12, 2020 29 / 41

I: Incomplete Implementation
Problem Author: Jorke de Vlas

Second step: making sure that the second quarter is sorted.
Choose the next n/4 positions and the positions of the next n/4 numbers.
When some of these overlap, choose arbitrary positions until the subarray is full.

1 2 4 7 3 5 8 6 =⇒ 1 2 3 4 6 5 8 7
↓ ↑

4 7 3 6 −→ 3 4 6 7

Figure: Second sorting step

BAPC 2020 December 12, 2020 30 / 41

I: Incomplete Implementation
Problem Author: Jorke de Vlas

Final step: sorting the remaining numbers.

1 2 3 4 6 5 8 7 =⇒ 1 2 3 4 5 6 7 8
↓ ↑

6 5 8 7 −→ 5 6 7 8

Figure: Final sorting step

Statistics: 132 submissions, 30 accepted, 41 unknown

BAPC 2020 December 12, 2020 31 / 41

J: Jigsaw
Problem Author: Mike de Vries

Problem: find the dimensions of a jigsaw puzzle given the amount of edge, corner
and center pieces.

Statistics: 305 submissions, 73 accepted, 22 unknown

BAPC 2020 December 12, 2020 32 / 41

J: Jigsaw
Problem Author: Mike de Vries

Problem: find the dimensions of a jigsaw puzzle given the amount of edge, corner
and center pieces.
A jigsaw puzzle of size w · h contains:

4 corner pieces
2(h − 2) + 2(w − 2) edge pieces
(h − 2)(w − 2) center pieces

This reduces the problem to a simple system of equations.

BAPC 2020 December 12, 2020 33 / 41

K: Xortest Path
Problem Author: Jorke de Vlas

Problem: given a connected undirected graph, find a path from a to b that
minimizes XOR of the values on the edges.

Build tree rooted at 1, and create a ‘distance’ array with d [i] as XOR of path
from 1 to i using tree edges.
Any edge (x , y) of weight w gives option to XOR v(x ,y) = d [x]⊕ d [y]⊕ w with
answer.
Claim: path from a to b has XOR-value d [a]⊕ d [b] XOR-ed with some v(x ,y)’s.

a b
1

x y

d [a] d [b]

d [x] d [y]

w

BAPC 2020 December 12, 2020 34 / 41

K: Xortest Path
Problem Author: Jorke de Vlas

Problem: given a connected undirected graph, find a path from a to b that
minimizes XOR of the values on the edges.
Build tree rooted at 1, and create a ‘distance’ array with d [i] as XOR of path
from 1 to i using tree edges.
Any edge (x , y) of weight w gives option to XOR v(x ,y) = d [x]⊕ d [y]⊕ w with
answer.
Claim: path from a to b has XOR-value d [a]⊕ d [b] XOR-ed with some v(x ,y)’s.

a b
1

x y

d [a] d [b]

d [x] d [y]

w

BAPC 2020 December 12, 2020 34 / 41

K: Xortest Path
Problem Author: Jorke de Vlas

Issue: there are ≈ 105 edges with which the answer can be reduced, but most of
them are “redundant”.
Solution: if there are cycles c1, c2, . . . , c` all with a 1 in the ith bit, replace the
cycle cost of cj by

cj ⊕ c1 < 2i , (2 ≤ j ≤ `).
(For mathematicians: do gaussian elimination over F2.)

Removing zeros gives at most 64 non-zero cycles, each with distinct
most-signficant bit.
For a query (a, b), try to remove the biggest 1s in the cost of d [a]⊕ d [b], by
using these 64 cycles.

Statistics: 15 submissions, 1 accepted, 11 unknown

BAPC 2020 December 12, 2020 35 / 41

Language stats

c csharp cpp java kotlin python3
0

100

200

300 Accepted
Wrong Answer
Time Limit
Runtime Error
Pending

BAPC 2020 December 12, 2020 36 / 41

Some stats

1400 commits
425 secret testcases
204 jury solutions
The number of lines the jury needed to solve all problems is

36 + 13 + 8 + 49 + 21 + 32 + 31 + 1 + 15 + 11 + 29 = 246

On average 22.4 lines per problem, up from 13.9 in the preliminaries!

BAPC 2020 December 12, 2020 37 / 41

Tips for next time

Don’t submit code for problems of the preliminaries

Test your code on the provided samples

Use the correct testing tool for the correct problem

Write efficient code:

Don’t submit the testing tool.
BAPC 2020 December 12, 2020 38 / 41

While you were coding...

In DOMjudge, 5 issues/feature requests were created, and 3 were fixed.
In BAPCtools, 2 issues/FRs was found and 1 fixed.
In the solve stats, 1 issue was found and fixed.

BAPC 2020 December 12, 2020 39 / 41

https://github.com/DOMjudge/domjudge
https://github.com/RagnarGrootKoerkamp/BAPCtools
https://github.com/hex539/scoreboard/pulls

The Proofreaders

Nicky Gerritsen
Ian Pratt-Hartmann
Michael Vasseur
Kevin Verbeek
David Wärn

BAPC 2020 December 12, 2020 40 / 41

The Jury

Ruben Brokkelkamp
Daan van Gent
Ragnar Groot Koerkamp
Joey Haas
Freek Henstra
Boas Kluiving
Timon Knigge
Ludo Pulles
Maarten Sijm
Harry Smit
Pim Spelier
Jorke de Vlas
Mees de Vries
Mike de Vries
Wessel van Woerden

BAPC 2020 December 12, 2020 41 / 41

	5.Plus:
	5.Reset:
	5.Minus:
	5.EndRight:
	5.StepRight:
	5.PlayPauseRight:
	5.PlayRight:
	5.PauseRight:
	5.PlayPauseLeft:
	5.PlayLeft:
	5.PauseLeft:
	5.StepLeft:
	5.EndLeft:
	anm5:
	5.34:
	5.33:
	5.32:
	5.31:
	5.30:
	5.29:
	5.28:
	5.27:
	5.26:
	5.25:
	5.24:
	5.23:
	5.22:
	5.21:
	5.20:
	5.19:
	5.18:
	5.17:
	5.16:
	5.15:
	5.14:
	5.13:
	5.12:
	5.11:
	5.10:
	5.9:
	5.8:
	5.7:
	5.6:
	5.5:
	5.4:
	5.3:
	5.2:
	5.1:
	5.0:
	4.Plus:
	4.Reset:
	4.Minus:
	4.EndRight:
	4.StepRight:
	4.PlayPauseRight:
	4.PlayRight:
	4.PauseRight:
	4.PlayPauseLeft:
	4.PlayLeft:
	4.PauseLeft:
	4.StepLeft:
	4.EndLeft:
	anm4:
	4.29:
	4.28:
	4.27:
	4.26:
	4.25:
	4.24:
	4.23:
	4.22:
	4.21:
	4.20:
	4.19:
	4.18:
	4.17:
	4.16:
	4.15:
	4.14:
	4.13:
	4.12:
	4.11:
	4.10:
	4.9:
	4.8:
	4.7:
	4.6:
	4.5:
	4.4:
	4.3:
	4.2:
	4.1:
	4.0:
	3.Plus:
	3.Reset:
	3.Minus:
	3.EndRight:
	3.StepRight:
	3.PlayPauseRight:
	3.PlayRight:
	3.PauseRight:
	3.PlayPauseLeft:
	3.PlayLeft:
	3.PauseLeft:
	3.StepLeft:
	3.EndLeft:
	anm3:
	3.46:
	3.45:
	3.44:
	3.43:
	3.42:
	3.41:
	3.40:
	3.39:
	3.38:
	3.37:
	3.36:
	3.35:
	3.34:
	3.33:
	3.32:
	3.31:
	3.30:
	3.29:
	3.28:
	3.27:
	3.26:
	3.25:
	3.24:
	3.23:
	3.22:
	3.21:
	3.20:
	3.19:
	3.18:
	3.17:
	3.16:
	3.15:
	3.14:
	3.13:
	3.12:
	3.11:
	3.10:
	3.9:
	3.8:
	3.7:
	3.6:
	3.5:
	3.4:
	3.3:
	3.2:
	3.1:
	3.0:
	2.Plus:
	2.Reset:
	2.Minus:
	2.EndRight:
	2.StepRight:
	2.PlayPauseRight:
	2.PlayRight:
	2.PauseRight:
	2.PlayPauseLeft:
	2.PlayLeft:
	2.PauseLeft:
	2.StepLeft:
	2.EndLeft:
	anm2:
	2.149:
	2.148:
	2.147:
	2.146:
	2.145:
	2.144:
	2.143:
	2.142:
	2.141:
	2.140:
	2.139:
	2.138:
	2.137:
	2.136:
	2.135:
	2.134:
	2.133:
	2.132:
	2.131:
	2.130:
	2.129:
	2.128:
	2.127:
	2.126:
	2.125:
	2.124:
	2.123:
	2.122:
	2.121:
	2.120:
	2.119:
	2.118:
	2.117:
	2.116:
	2.115:
	2.114:
	2.113:
	2.112:
	2.111:
	2.110:
	2.109:
	2.108:
	2.107:
	2.106:
	2.105:
	2.104:
	2.103:
	2.102:
	2.101:
	2.100:
	2.99:
	2.98:
	2.97:
	2.96:
	2.95:
	2.94:
	2.93:
	2.92:
	2.91:
	2.90:
	2.89:
	2.88:
	2.87:
	2.86:
	2.85:
	2.84:
	2.83:
	2.82:
	2.81:
	2.80:
	2.79:
	2.78:
	2.77:
	2.76:
	2.75:
	2.74:
	2.73:
	2.72:
	2.71:
	2.70:
	2.69:
	2.68:
	2.67:
	2.66:
	2.65:
	2.64:
	2.63:
	2.62:
	2.61:
	2.60:
	2.59:
	2.58:
	2.57:
	2.56:
	2.55:
	2.54:
	2.53:
	2.52:
	2.51:
	2.50:
	2.49:
	2.48:
	2.47:
	2.46:
	2.45:
	2.44:
	2.43:
	2.42:
	2.41:
	2.40:
	2.39:
	2.38:
	2.37:
	2.36:
	2.35:
	2.34:
	2.33:
	2.32:
	2.31:
	2.30:
	2.29:
	2.28:
	2.27:
	2.26:
	2.25:
	2.24:
	2.23:
	2.22:
	2.21:
	2.20:
	2.19:
	2.18:
	2.17:
	2.16:
	2.15:
	2.14:
	2.13:
	2.12:
	2.11:
	2.10:
	2.9:
	2.8:
	2.7:
	2.6:
	2.5:
	2.4:
	2.3:
	2.2:
	2.1:
	2.0:
	1.Plus:
	1.Reset:
	1.Minus:
	1.EndRight:
	1.StepRight:
	1.PlayPauseRight:
	1.PlayRight:
	1.PauseRight:
	1.PlayPauseLeft:
	1.PlayLeft:
	1.PauseLeft:
	1.StepLeft:
	1.EndLeft:
	anm1:
	1.109:
	1.108:
	1.107:
	1.106:
	1.105:
	1.104:
	1.103:
	1.102:
	1.101:
	1.100:
	1.99:
	1.98:
	1.97:
	1.96:
	1.95:
	1.94:
	1.93:
	1.92:
	1.91:
	1.90:
	1.89:
	1.88:
	1.87:
	1.86:
	1.85:
	1.84:
	1.83:
	1.82:
	1.81:
	1.80:
	1.79:
	1.78:
	1.77:
	1.76:
	1.75:
	1.74:
	1.73:
	1.72:
	1.71:
	1.70:
	1.69:
	1.68:
	1.67:
	1.66:
	1.65:
	1.64:
	1.63:
	1.62:
	1.61:
	1.60:
	1.59:
	1.58:
	1.57:
	1.56:
	1.55:
	1.54:
	1.53:
	1.52:
	1.51:
	1.50:
	1.49:
	1.48:
	1.47:
	1.46:
	1.45:
	1.44:
	1.43:
	1.42:
	1.41:
	1.40:
	1.39:
	1.38:
	1.37:
	1.36:
	1.35:
	1.34:
	1.33:
	1.32:
	1.31:
	1.30:
	1.29:
	1.28:
	1.27:
	1.26:
	1.25:
	1.24:
	1.23:
	1.22:
	1.21:
	1.20:
	1.19:
	1.18:
	1.17:
	1.16:
	1.15:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	0.Plus:
	0.Reset:
	0.Minus:
	0.EndRight:
	0.StepRight:
	0.PlayPauseRight:
	0.PlayRight:
	0.PauseRight:
	0.PlayPauseLeft:
	0.PlayLeft:
	0.PauseLeft:
	0.StepLeft:
	0.EndLeft:
	anm0:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

