
Appalling Architecture

You were asked to check whether the center of mass lies to
the left of the leftmost point on the ground, to the right of
the rightmost point, or in between.
To calculate x -coordinate of the center of mass, calculate∑

(x ,y) is the middle of a box
x

and divide by the number of boxes the construction is made
of.
Careful: the middle of a box is a half-integer. (Or, the sides of
the boxes are half integers.)
Runtime: O(area of grid), but much slower solutions were
accepted.

— September 29, 2018 1 / 23

Bee Problem

Calculate the size of connected components in the grid, then
use the largest remaining one until you are out of honey.
Use a standard flood fill algorithm (DFS or BFS) to calculate
the sizes of the components.
But: the grid is not a square grid, like in your computer, but a
hex grid!

— September 29, 2018 2 / 23

Bee Problem

One way of solving this: put it in a rectangular grid and compute
neighbours differently based on whether the row is odd or even.

— September 29, 2018 3 / 23

Bee Problem

A second way of solving this: put the grid into a larger rectangular
array, but offset the rows. Then the neighbors are always the same.

— September 29, 2018 4 / 23

Criss-Cross Cables

Goal: find out whether, given an increasing list x1, . . . , xn and
a list l1, . . . , lm, for every 1 ≤ i ≤ m there is a pair
pi = (xi1 , xi2) (i1 < i2) such that xi2 − xi1 < li and pi 6= pj for
all 1 ≤ i < j ≤ m.
First idea: calculate all distances, sort them by length, and
check.
Problem: this is O(n2 log n).

— September 29, 2018 5 / 23

Criss-Cross Cables

Problem: this is O(n2 log n).
Solve this by only calculating the distances you need: make a
priority queue of distances, and add all distances xi+1 − xi .
Then, repeatedly do the following:

See if you can make the smallest wire fit on the smallest
current distance. If not, the answer is “no”.
If it does fit, remove the smallest wire and the smallest current
distance. Suppose this distance was between xi and xj : add
distances xj+1 − xi and xj − xi+1 to the queue.

If you get rid of all wires this way, then the answer is “yes”.
Watch out for i = 0 or j = n!
Other nice solutions were possible (or not so nice, if you
coded efficiently); see the judge directory.
Runtime: O(n log n).

— September 29, 2018 6 / 23

Daily Division (1)

Question: Given an array a0, . . . , an−1, find the index i which
minimizes |(a0 + · · ·+ ai−1)− (ai+1 + · · ·+ an−1)| − δ where
δ = 1 if ai is odd and the left-half and right-half are not
equal, and else δ = 0.

First, consider no δ. Let
F (i) = a0 + · · ·+ ai−1 − (ai+1 + · · ·+ an−1). Then
F (0) < 0,F (n − 1) > 0. Observe that
F (i + 1)− F (i) = ai + ai+1 ≥ 2, so F is an strictly increasing
function.
With a binary search, determine the smallest index i such that
F (i) >= 0. Then the index minimizing |F (j)| is i or i − 1.
Answering queries takes O(log n) calculations of F .

— September 29, 2018 7 / 23

Daily Division (1)

Question: Given an array a0, . . . , an−1, find the index i which
minimizes |(a0 + · · ·+ ai−1)− (ai+1 + · · ·+ an−1)| − δ where
δ = 1 if ai is odd and the left-half and right-half are not
equal, and else δ = 0.
First, consider no δ. Let
F (i) = a0 + · · ·+ ai−1 − (ai+1 + · · ·+ an−1). Then
F (0) < 0,F (n − 1) > 0. Observe that
F (i + 1)− F (i) = ai + ai+1 ≥ 2, so F is an strictly increasing
function.

With a binary search, determine the smallest index i such that
F (i) >= 0. Then the index minimizing |F (j)| is i or i − 1.
Answering queries takes O(log n) calculations of F .

— September 29, 2018 7 / 23

Daily Division (1)

Question: Given an array a0, . . . , an−1, find the index i which
minimizes |(a0 + · · ·+ ai−1)− (ai+1 + · · ·+ an−1)| − δ where
δ = 1 if ai is odd and the left-half and right-half are not
equal, and else δ = 0.
First, consider no δ. Let
F (i) = a0 + · · ·+ ai−1 − (ai+1 + · · ·+ an−1). Then
F (0) < 0,F (n − 1) > 0. Observe that
F (i + 1)− F (i) = ai + ai+1 ≥ 2, so F is an strictly increasing
function.
With a binary search, determine the smallest index i such that
F (i) >= 0. Then the index minimizing |F (j)| is i or i − 1.

Answering queries takes O(log n) calculations of F .

— September 29, 2018 7 / 23

Daily Division (1)

Question: Given an array a0, . . . , an−1, find the index i which
minimizes |(a0 + · · ·+ ai−1)− (ai+1 + · · ·+ an−1)| − δ where
δ = 1 if ai is odd and the left-half and right-half are not
equal, and else δ = 0.
First, consider no δ. Let
F (i) = a0 + · · ·+ ai−1 − (ai+1 + · · ·+ an−1). Then
F (0) < 0,F (n − 1) > 0. Observe that
F (i + 1)− F (i) = ai + ai+1 ≥ 2, so F is an strictly increasing
function.
With a binary search, determine the smallest index i such that
F (i) >= 0. Then the index minimizing |F (j)| is i or i − 1.
Answering queries takes O(log n) calculations of F .

— September 29, 2018 7 / 23

Daily Division (2)

Note, F (i) = 2
∑i−1

j=0 aj + ai −
∑n−1

j=0 aj . The last two terms
can be done in O(1), by updating the sum after a query.

For the first term, we have multiple data structures possible
which allow fast update and querying:

Fenwick tree - O(log n)
Segment tree - O(log n)
Square-root decomposition - O(

√
n)

Now consider the δ again. Call the target function
F ′(j) = |F (j)| − δ. Since F (j + 1)− F (j) ≥ 2. From our
binary search, with i smallest such that F (i) ≥ 0, now either
i − 2, i − 1 or i is minimal (proof!).
Total runtime: O(n log n) or O(n

√
n).

— September 29, 2018 8 / 23

Daily Division (2)

Note, F (i) = 2
∑i−1

j=0 aj + ai −
∑n−1

j=0 aj . The last two terms
can be done in O(1), by updating the sum after a query.
For the first term, we have multiple data structures possible
which allow fast update and querying:

Fenwick tree - O(log n)
Segment tree - O(log n)
Square-root decomposition - O(

√
n)

Now consider the δ again. Call the target function
F ′(j) = |F (j)| − δ. Since F (j + 1)− F (j) ≥ 2. From our
binary search, with i smallest such that F (i) ≥ 0, now either
i − 2, i − 1 or i is minimal (proof!).
Total runtime: O(n log n) or O(n

√
n).

— September 29, 2018 8 / 23

Daily Division (2)

Note, F (i) = 2
∑i−1

j=0 aj + ai −
∑n−1

j=0 aj . The last two terms
can be done in O(1), by updating the sum after a query.
For the first term, we have multiple data structures possible
which allow fast update and querying:

Fenwick tree - O(log n)
Segment tree - O(log n)
Square-root decomposition - O(

√
n)

Now consider the δ again. Call the target function
F ′(j) = |F (j)| − δ. Since F (j + 1)− F (j) ≥ 2. From our
binary search, with i smallest such that F (i) ≥ 0, now either
i − 2, i − 1 or i is minimal (proof!).

Total runtime: O(n log n) or O(n
√

n).

— September 29, 2018 8 / 23

Daily Division (2)

Note, F (i) = 2
∑i−1

j=0 aj + ai −
∑n−1

j=0 aj . The last two terms
can be done in O(1), by updating the sum after a query.
For the first term, we have multiple data structures possible
which allow fast update and querying:

Fenwick tree - O(log n)
Segment tree - O(log n)
Square-root decomposition - O(

√
n)

Now consider the δ again. Call the target function
F ′(j) = |F (j)| − δ. Since F (j + 1)− F (j) ≥ 2. From our
binary search, with i smallest such that F (i) ≥ 0, now either
i − 2, i − 1 or i is minimal (proof!).
Total runtime: O(n log n) or O(n

√
n).

— September 29, 2018 8 / 23

Eating Everything Efficiently

Question: given a DAG with points at every node (but with
diminishing returns), what is the best score that can be
obtained by walking along the edges?
Greedy approach is infeasible: sometimes a very lucrative stall
may be thousands of nodes away.
Brute force does not work: way to many paths to check.
Dynamic programming: if we started in the leaves the answer
is simple: just eat the pizza. How do we go from there?

— September 29, 2018 9 / 23

Eating Everything Efficiently

Dynamic programming: if we started in the leaves the answer
is simple: just eat the pizza. How do we go from there?
The diminishing returns are constructed in a special way:
eating at a stall before entering a subgraph S will divide the
score you can get in S by 2.
This gives the following:

dp[v] = max
u child of v

(
max

(
cv + dp[u]

2 , dp[u]
))
.

Then the result is in dp[0].
Runtime: O(n + m).

— September 29, 2018 10 / 23

Floating points

Given the 2D outline of a ship and some submerged ping pong
balls, how many balls remain under water because they are
stuck beneath the ship?
Basic solution: just let the balls float up, and see if they ever
get positive y -coordinate. Repeat:

Float up. Find the lowest edge you hit.
Is the edge horizontal? Then you’re stuck. Otherwise float
along the edge until a corner.
In a corner: do you get stuck, do you float to the connecting
edge, or do you float up freely?
Repeat until you float off to above the surface or you get stuck.

— September 29, 2018 11 / 23

Floating points

Floating up once takes O(n) time. Floating up all the way to
the top takes O(n2) time.
This gives a O(bn2) solution → too slow.
To improve the solution: Preprocess the ship. First calculate
for every edge what the outcome is if the ball hits this edge,
which takes O(n2) time if you use memoization. Then try all
balls, which now takes O(n) per ball. Runtime: O(n2 + bn).

— September 29, 2018 12 / 23

Green Light
Problem
A traffic light is green for Tg seconds, yellow for Ty and red for
Tr . Given a series of observations of colors at specific times,
compute the probability that the light is color cq at some time tq.

Solution
The traffic light goes through a cycle every T = Tr + Ty + Tg
seconds. So an observation of, say, green at time t implies that the
light is also green at t + T , t + 2T , t − T , etc. So we can model
‘time’ not as a line, but as a circle. The question is then, how is
the color cycle rotated over the circle? (i.e., at what time t0
modulo T did the cycle start?)

t, t0 = 0 t = 0

t0

t = 0
t0

— September 29, 2018 13 / 23

Green Light

Solution
If we observe, say, yellow at time t ′ (modulo T) this implies the
light turns yellow at some point in (t ′ − Ty , t ′], and consequently
that it turns green at some point in (t ′ − Ty − Tg , t ′ − Ty], i.e.:

t ′ − Ty − Tg < t0 ≤ t ′ − Ty

Every observation gives rise to an interval on the circle where t0
must be located. Intersecting all these intervals gives the only
admissible region on the circle for t0.

t ′, yellow

t0??

t”, green
t0??

t ′, yellow

t”, green
t0??⋂ =

— September 29, 2018 14 / 23

Solution
Call the resulting admissible circle section A. Finally, the problem
asks us the probability that at time tq the color is cq. Treating this
as an observation gives another interval I. The answer is then
simply |I ∩ A|/|A| (where | · | gives the length of an interval) - that
is, the proportion of A that also results in color c ′ at time t ′.

A

tq = 0
green

I A ∩ I⋂ =

This sample yields: |A ∩ I|/|A| = 1/2.
In principle these intersections can be calculated in O(n log n), but
with the given bounds O(n2) is fine. The tricky part is working
with intervals on the circle.

— September 29, 2018 15 / 23

H to O

Given an input molecule (CH3OH) and a count of that
molecule (5), how many of a target molecule (CH2) can you
make?
Solution using arrays: One counter array of 26 atoms for each
molecule, filled at parsing.

Input atom: A B C . . . H . . . O . . . Z
0 0 1 . . . 3+1 . . . 1 . . . 0

Output atom: A B C . . . H . . . O . . . Z
0 0 1 . . . 2 . . . 0 . . . 0

Now multiply each number in the first array by 5, and
compare the two arrays.
Don’t forget to watch out for division by 0!
A solution that works on all sample test cases usually works
on all inputs.

— September 29, 2018 16 / 23

Isomorphic Inversion

Problem
Given a string s, partition it into a maximal number of contiguous
substrings s = s0s1 . . . sk−1, such that si = sk−i−1 for all i .

013189301

01 | 3 | 189 | 3 | 01

Output k = 5

— September 29, 2018 17 / 23

Isomorphic Inversion

Solution
Greedy solution: Find the smallest prefix of s that is also a suffix,
and remove them. Repeat until s = ∅.

Proof
Proof by contradiction: suppose that at some point the optimal
solution removes a longer prefix/suffix b, whereas we want to
remove the shortest prefix/suffix a.

a a

b b

— September 29, 2018 18 / 23

Isomorphic Inversion

Proof
We know that a must be both a prefix and a suffix of b. If
|a| ≤ |b|/2 then we can write b = aca for some c, and in the
optimal solution, replace b with a | c | a, contradicting optimality.

a ac ca a

b b

— September 29, 2018 19 / 23

Isomorphic Inversion

Proof
On the other hand, if |a| > |b|/2, then the prefix/suffix occurences
of a in b overlap. Call this overlap d :

a a

b b

d d

d d

But then the overlap d must also be a prefix and suffix of the whole
string s, contradicting the fact that a is the smallest such string.

— September 29, 2018 20 / 23

Isomorphic Inversion

Solution
It takes O(k) time to check if a prefix of length k is also a suffix,
so a naive implementation of this solution will have a runtime of
O(n2) and will give TLE.

We can speed this up by maintaining rolling hashes of the prefix
and suffix as we scan in from both sides, and reset when we find a
match, giving O(n).

The hash of a string ti ti+1 . . . tj is Hi ,j =
∑j

k=i tkpk−i mod M for
some small prime p and large prime M. By precomputing pk we
can quickly update to the hash of

ti ti+1 . . . tjtj+1 (Hi ,j+1 = Hi ,j + tj+1pj−i+1)
ti−1ti ti+1 . . . tj (Hi−1,j = ti−1 + p · Hi ,j)

— September 29, 2018 21 / 23

Jurassic Jigsaw

Given a set of strings of DNA, what is the “most likely”
evolutionary tree?
Turn the strings into a weighted graph: the weight on an edge
between string s and string t is the number of positions i such
that si 6= ti .
Then the problem is: compute a minimum spanning tree.
Use Kruskal or Prim or another MST algorithm. Run time:
O(n2k log(n)).

— September 29, 2018 22 / 23

Kallax Construction

Given a couple of companies that pack inefficiently, what is
the pack with the smallest advertised size that still contains at
least B pegs?
For every company, you solve a knapsack problem: having
kept track of both the advertised and the real size of the
packs of the previous company, use knapsack to find the best
packing for a company.
Take care: you need to take the lowest real size.
Runtime: O(Bkl).

— September 29, 2018 23 / 23

