
A Prize No One Can Win
AC before freeze: 55 / 100

First solve after 6 minutes

— October 27, 2018 1 / 50



A Prize No One Can Win

From a list of numbers, how many can you select without any
two summing to > X?
If you can still select another item, you can always select the
cheapest item.
So easiest solution is: sort the list and greedily take the
cheapest.

A more elegant solution:
You know you want at least all items ≤ X/2.
Whether or not you additionally want a single item > X/2
depends on the cheapest item > X/2 and the most expensive
≤ X/2.

You can find these three values in a single pass over the data.
Run time: O(n log(n)) or O(n).
Pitfall: you always want to select at least one item.

— October 27, 2018 2 / 50



A Prize No One Can Win

From a list of numbers, how many can you select without any
two summing to > X?
If you can still select another item, you can always select the
cheapest item.
So easiest solution is: sort the list and greedily take the
cheapest.
A more elegant solution:

You know you want at least all items ≤ X/2.
Whether or not you additionally want a single item > X/2
depends on the cheapest item > X/2 and the most expensive
≤ X/2.

You can find these three values in a single pass over the data.
Run time: O(n log(n)) or O(n).

Pitfall: you always want to select at least one item.

— October 27, 2018 2 / 50



A Prize No One Can Win

From a list of numbers, how many can you select without any
two summing to > X?
If you can still select another item, you can always select the
cheapest item.
So easiest solution is: sort the list and greedily take the
cheapest.
A more elegant solution:

You know you want at least all items ≤ X/2.
Whether or not you additionally want a single item > X/2
depends on the cheapest item > X/2 and the most expensive
≤ X/2.

You can find these three values in a single pass over the data.
Run time: O(n log(n)) or O(n).
Pitfall: you always want to select at least one item.

— October 27, 2018 2 / 50



Birthday Boy
AC before freeze: 41 / 120

First solve after 39 minutes

— October 27, 2018 3 / 50



Birthday Boy (1)

Find the date which is the longest after any birthday on the
calendar.
Easiest algorithm: convert all dates to numbers, and look for
the largest gap, then convert the number back into a date.
Pitfall: make sure you do the tie breaks right.
Pitfall: the longest gap might include new year (“wrap
around”).
Pitfall: 01-00 is not a date.

— October 27, 2018 4 / 50



Birthday Boy (2)

Pitfall: dates are terrible.

— October 27, 2018 5 / 50



Birthday Boy (2)

Pitfall: dates are terrible.

— October 27, 2018 5 / 50



Financial Planning
AC before freeze: 38 / 146

First solved after 32 minutes

— October 27, 2018 6 / 50



Financial Planning (1)
Which investments should you buy to be able to retire as soon
as possible?
Observe:

If you buy an investment, you want to buy it on day 0.
If you take d days, you might as well buy every single
investment which pays off by day d .

Solution 1:
Binary search on the number of days.
For a candidate day d , buy every investment that pays off
before d .

Solution 2:
For each investment, compute at which day it starts paying off.
Sort investments by the day they start paying off.
Greedily add investments which pay off the soonest as long as
they do not start paying off after your current retirement day.

Run time: O(n log(n)).

— October 27, 2018 7 / 50



Financial Planning (2)

Biggest pitfall: OVERFLOW!
It can take up to 2× 109 days.
On the other hand, on day 2× 109 you might have made
≈ 2× 1023 euros!

The test case which tests for this was added this morning.
There were 13 submissions which only failed on this one test
case.

— October 27, 2018 8 / 50



Financial Planning (2)

Biggest pitfall: OVERFLOW!
It can take up to 2× 109 days.
On the other hand, on day 2× 109 you might have made
≈ 2× 1023 euros!
The test case which tests for this was added this morning.
There were 13 submissions which only failed on this one test
case.

— October 27, 2018 8 / 50



Cardboard Container
AC before freeze: 38 / 84

First solved after 14 minutes

— October 27, 2018 9 / 50



Cardboard Container

Given a volume V ≤ 106, find

min{2(ab + bc + ca)|a, b, c ∈ N, abc = V }.

Naive implementation: iterate over all triples (a, b, c) with
1 ≤ a, b, c ≤ V . Runtime O(V 3).

Faster: iterate over all pairs (a, b) with 1 ≤ a, b ≤ V , and
check that c = V /ab is an integer. Runtime O(V 2).
Two of a, b, c must be ≤

√
V : iterate over all pairs (a, b)

with 1 ≤ a, b ≤
√

V . Runtime O(V ).
Make a list of at most 240 divisors of V , and try all pairs or
triples.

— October 27, 2018 10 / 50



Cardboard Container

Given a volume V ≤ 106, find

min{2(ab + bc + ca)|a, b, c ∈ N, abc = V }.

Naive implementation: iterate over all triples (a, b, c) with
1 ≤ a, b, c ≤ V . Runtime O(V 3).
Faster: iterate over all pairs (a, b) with 1 ≤ a, b ≤ V , and
check that c = V /ab is an integer. Runtime O(V 2).

Two of a, b, c must be ≤
√

V : iterate over all pairs (a, b)
with 1 ≤ a, b ≤

√
V . Runtime O(V ).

Make a list of at most 240 divisors of V , and try all pairs or
triples.

— October 27, 2018 10 / 50



Cardboard Container

Given a volume V ≤ 106, find

min{2(ab + bc + ca)|a, b, c ∈ N, abc = V }.

Naive implementation: iterate over all triples (a, b, c) with
1 ≤ a, b, c ≤ V . Runtime O(V 3).
Faster: iterate over all pairs (a, b) with 1 ≤ a, b ≤ V , and
check that c = V /ab is an integer. Runtime O(V 2).
Two of a, b, c must be ≤

√
V : iterate over all pairs (a, b)

with 1 ≤ a, b ≤
√

V . Runtime O(V ).

Make a list of at most 240 divisors of V , and try all pairs or
triples.

— October 27, 2018 10 / 50



Cardboard Container

Given a volume V ≤ 106, find

min{2(ab + bc + ca)|a, b, c ∈ N, abc = V }.

Naive implementation: iterate over all triples (a, b, c) with
1 ≤ a, b, c ≤ V . Runtime O(V 3).
Faster: iterate over all pairs (a, b) with 1 ≤ a, b ≤ V , and
check that c = V /ab is an integer. Runtime O(V 2).
Two of a, b, c must be ≤

√
V : iterate over all pairs (a, b)

with 1 ≤ a, b ≤
√

V . Runtime O(V ).
Make a list of at most 240 divisors of V , and try all pairs or
triples.

— October 27, 2018 10 / 50



Game Night
AC before freeze: 30 / 47

First solve after 64 minutes

— October 27, 2018 11 / 50



Game Night

Problem
Given a circular string of letters ABC, find the minimum number of
people that must switch seats such that the teams are lined up
correctly, i.e. ...AAABBCC... or ...AAACCBB....

Solution
The number of A’s, B’s, C’s is fixed. Try all team orderings of
ABC or ACB and every index for the first A.
However O(N2) is too slow.

— October 27, 2018 12 / 50



Game Night

Use a sliding window.
1 Iterate over the index of A. Keep count of wrongly placed

people.
2 Shifting index by one changes 3 people.

Calculating prefix sums and finding number of misplaced people for
all A’s, B’s, C’s in O(1) also works.
Runtime: O(N).

— October 27, 2018 13 / 50



Janitor Troubles
AC before freeze: 15 / 30

First solve after 32 minutes

— October 27, 2018 14 / 50



Janitor Troubles (1)
Given four integers, what is the maximal area of a
quadrilateral with these side length?

Observation 1: The order of the edges doesn’t matter.
Observation 2: The area is maximal for a cyclic quadrilateral.

Proof: A circle maximizes the area for a given circumference if
we’re allowed arbitrary shapes.
Opposite corners sum to 180 degrees.

— October 27, 2018 15 / 50



Janitor Troubles (1)
Given four integers, what is the maximal area of a
quadrilateral with these side length?
Observation 1: The order of the edges doesn’t matter.
Observation 2: The area is maximal for a cyclic quadrilateral.

Proof: A circle maximizes the area for a given circumference if
we’re allowed arbitrary shapes.
Opposite corners sum to 180 degrees.

— October 27, 2018 15 / 50



Janitor Troubles (2)
For the diagonal f , the cosine law gives us:

a2 + b2 − 2ab cos(α) = f = c2 + d2 − 2cd cos(180− α).

Solution 1: solve for α. The total area is (ab + cd) sin(α)/2.
Solution 2: solve for f . Use Heron’s formula using sides
(a, b, f ) and (c, d , f ):

Area(x , y , z) =
√

s(s − x)(s − y)(s − z)

for s = (x + y + z)/2.

— October 27, 2018 16 / 50



Janitor Troubles (3)

Alternative 1: binary search the radius of the circle.
Alternative 2: ternary search the length of a diagonal.

Alternative 3: use Brahmagupta’s formula directly:
s = (a + b + c + d)/2

Area(a, b, c, d) =
√

(s − a)(s − b)(s − c)(s − d).

— October 27, 2018 17 / 50



Janitor Troubles (3)

Alternative 1: binary search the radius of the circle.
Alternative 2: ternary search the length of a diagonal.
Alternative 3: use Brahmagupta’s formula directly:
s = (a + b + c + d)/2

Area(a, b, c, d) =
√

(s − a)(s − b)(s − c)(s − d).

— October 27, 2018 17 / 50



Harry the Hamster
AC before freeze: 5 / 22

First solve after 161 minutes

— October 27, 2018 18 / 50



t

3 4

1

s

2

2 1

1 5

20

1

Given a graph with start s and end t, and a ham-
ster with two brain halves: what is the shortest
route from start to end (if it exists)?

Looks like a minimax, but this is probably too
slow

Idea: reverse the edges and do a modified Dijk-
stra (no game theory needed!)

— October 27, 2018 19 / 50



t

ttt

3

3333

4

4444

1

111

s

sss

2

2 1

1 5

20

1

∞

228

0

56

∞

3

0

36

∞

1

0

1

∞

5

0

521

0
0

Give every node two states: a red state for the
path to t given that the fast half chooses at
this node, and a blue state for the path to t
given that the slow half chooses.

We can relax a blue node if we’ve relaxed all
of its red parents (formerly children). If no
blue nodes can be relaxed, then relax the node
with the smallest value (just like Dijkstra).
Relaxing means pushing your distance to all
children of the other colour.

We are going to look at this process for an
acyclic graph, but this also works for cyclic
graphs.

We can relax the blue node t as it has no
parents.

Red nodes 3 and 4 have updated distances: if
the fast half gets to choose in node 4, then it
is guaranteed that within 5 time units Harry
will reach t.

There are no more blue nodes to be relaxed,
so we relax the red node t.

This updates the blue values of nodes 3 and 4:
if the slow side gets to choose in node 4, it is
guaranteed that getting to t will take at least
5 time units

Node t is now finished. Now the blue node 3
can be relaxed, and we know the choice of the
slow brain half.

This updates the red value of node 1.

Now the red node 3 can be relaxed (it has a
smaller value than the red node 4

This updates the blue node 4.

This finishes node 3 completely.Now the blue node 4 is updated.

This updates the red node s, giving a first
path of distance 22.

The red node 1 has distance 3, the red node 4
has distance 5, so we relax 1 first.
The red node 4 is now relaxed. Node 4 is
completely finished.
The blue node 1 is now relaxed. Node 1 is
completely finished.

We finish by relaxing the nodes of s, finding a
distance of 8 and completing the full decision
graph.

— October 27, 2018 20 / 50



t

t

tt

3

3333

4

4444

1

111

s

sss

2

2 1

1 5

20

1

∞

228

0

56

∞

3

0

36

∞

1

0

1

∞

5

0

521

0
0

Give every node two states: a red state for the
path to t given that the fast half chooses at
this node, and a blue state for the path to t
given that the slow half chooses.

We can relax a blue node if we’ve relaxed all
of its red parents (formerly children). If no
blue nodes can be relaxed, then relax the node
with the smallest value (just like Dijkstra).
Relaxing means pushing your distance to all
children of the other colour.

We are going to look at this process for an
acyclic graph, but this also works for cyclic
graphs.

We can relax the blue node t as it has no
parents.

Red nodes 3 and 4 have updated distances: if
the fast half gets to choose in node 4, then it
is guaranteed that within 5 time units Harry
will reach t.

There are no more blue nodes to be relaxed,
so we relax the red node t.

This updates the blue values of nodes 3 and 4:
if the slow side gets to choose in node 4, it is
guaranteed that getting to t will take at least
5 time units

Node t is now finished. Now the blue node 3
can be relaxed, and we know the choice of the
slow brain half.

This updates the red value of node 1.

Now the red node 3 can be relaxed (it has a
smaller value than the red node 4

This updates the blue node 4.

This finishes node 3 completely.Now the blue node 4 is updated.

This updates the red node s, giving a first
path of distance 22.

The red node 1 has distance 3, the red node 4
has distance 5, so we relax 1 first.
The red node 4 is now relaxed. Node 4 is
completely finished.
The blue node 1 is now relaxed. Node 1 is
completely finished.

We finish by relaxing the nodes of s, finding a
distance of 8 and completing the full decision
graph.

— October 27, 2018 20 / 50



t

t

tt

3

3333

4

4444

1

111

s

sss

2

2 1

1 5

20

1

∞

228

0

56

∞

3

0

36

∞

1
0

1

∞

5
0

521

0
0

Give every node two states: a red state for the
path to t given that the fast half chooses at
this node, and a blue state for the path to t
given that the slow half chooses.

We can relax a blue node if we’ve relaxed all
of its red parents (formerly children). If no
blue nodes can be relaxed, then relax the node
with the smallest value (just like Dijkstra).
Relaxing means pushing your distance to all
children of the other colour.

We are going to look at this process for an
acyclic graph, but this also works for cyclic
graphs.

We can relax the blue node t as it has no
parents.

Red nodes 3 and 4 have updated distances: if
the fast half gets to choose in node 4, then it
is guaranteed that within 5 time units Harry
will reach t.

There are no more blue nodes to be relaxed,
so we relax the red node t.

This updates the blue values of nodes 3 and 4:
if the slow side gets to choose in node 4, it is
guaranteed that getting to t will take at least
5 time units

Node t is now finished. Now the blue node 3
can be relaxed, and we know the choice of the
slow brain half.

This updates the red value of node 1.

Now the red node 3 can be relaxed (it has a
smaller value than the red node 4

This updates the blue node 4.

This finishes node 3 completely.Now the blue node 4 is updated.

This updates the red node s, giving a first
path of distance 22.

The red node 1 has distance 3, the red node 4
has distance 5, so we relax 1 first.
The red node 4 is now relaxed. Node 4 is
completely finished.
The blue node 1 is now relaxed. Node 1 is
completely finished.

We finish by relaxing the nodes of s, finding a
distance of 8 and completing the full decision
graph.

— October 27, 2018 20 / 50



tt

t

t

3

3333

4

4444

1

111

s

sss

2

2 1

1 5

20

1

∞

228

0

56

∞

3

0

36

∞

1
0

1

∞

5
0

521

0
0

Give every node two states: a red state for the
path to t given that the fast half chooses at
this node, and a blue state for the path to t
given that the slow half chooses.

We can relax a blue node if we’ve relaxed all
of its red parents (formerly children). If no
blue nodes can be relaxed, then relax the node
with the smallest value (just like Dijkstra).
Relaxing means pushing your distance to all
children of the other colour.

We are going to look at this process for an
acyclic graph, but this also works for cyclic
graphs.

We can relax the blue node t as it has no
parents.

Red nodes 3 and 4 have updated distances: if
the fast half gets to choose in node 4, then it
is guaranteed that within 5 time units Harry
will reach t.

There are no more blue nodes to be relaxed,
so we relax the red node t.

This updates the blue values of nodes 3 and 4:
if the slow side gets to choose in node 4, it is
guaranteed that getting to t will take at least
5 time units

Node t is now finished. Now the blue node 3
can be relaxed, and we know the choice of the
slow brain half.

This updates the red value of node 1.

Now the red node 3 can be relaxed (it has a
smaller value than the red node 4

This updates the blue node 4.

This finishes node 3 completely.Now the blue node 4 is updated.

This updates the red node s, giving a first
path of distance 22.

The red node 1 has distance 3, the red node 4
has distance 5, so we relax 1 first.
The red node 4 is now relaxed. Node 4 is
completely finished.
The blue node 1 is now relaxed. Node 1 is
completely finished.

We finish by relaxing the nodes of s, finding a
distance of 8 and completing the full decision
graph.

— October 27, 2018 20 / 50



tt

t

t

3

3333

4

4444

1

111

s

sss

2

2 1

1 5

20

1

∞

228

0

56

∞

3

0

36

∞

1

0

1

∞

5

0

5

21

0
0

Give every node two states: a red state for the
path to t given that the fast half chooses at
this node, and a blue state for the path to t
given that the slow half chooses.

We can relax a blue node if we’ve relaxed all
of its red parents (formerly children). If no
blue nodes can be relaxed, then relax the node
with the smallest value (just like Dijkstra).
Relaxing means pushing your distance to all
children of the other colour.

We are going to look at this process for an
acyclic graph, but this also works for cyclic
graphs.

We can relax the blue node t as it has no
parents.

Red nodes 3 and 4 have updated distances: if
the fast half gets to choose in node 4, then it
is guaranteed that within 5 time units Harry
will reach t.

There are no more blue nodes to be relaxed,
so we relax the red node t.

This updates the blue values of nodes 3 and 4:
if the slow side gets to choose in node 4, it is
guaranteed that getting to t will take at least
5 time units

Node t is now finished. Now the blue node 3
can be relaxed, and we know the choice of the
slow brain half.

This updates the red value of node 1.

Now the red node 3 can be relaxed (it has a
smaller value than the red node 4

This updates the blue node 4.

This finishes node 3 completely.Now the blue node 4 is updated.

This updates the red node s, giving a first
path of distance 22.

The red node 1 has distance 3, the red node 4
has distance 5, so we relax 1 first.
The red node 4 is now relaxed. Node 4 is
completely finished.
The blue node 1 is now relaxed. Node 1 is
completely finished.

We finish by relaxing the nodes of s, finding a
distance of 8 and completing the full decision
graph.

— October 27, 2018 20 / 50



ttt

t

3

3

333

4

4444

1

111

s

sss

2

2 1

1 5

20

1

∞

228

0

56

∞

3

0

36

∞

1

0

1

∞

5

0

5

21

0
0

Give every node two states: a red state for the
path to t given that the fast half chooses at
this node, and a blue state for the path to t
given that the slow half chooses.

We can relax a blue node if we’ve relaxed all
of its red parents (formerly children). If no
blue nodes can be relaxed, then relax the node
with the smallest value (just like Dijkstra).
Relaxing means pushing your distance to all
children of the other colour.

We are going to look at this process for an
acyclic graph, but this also works for cyclic
graphs.

We can relax the blue node t as it has no
parents.

Red nodes 3 and 4 have updated distances: if
the fast half gets to choose in node 4, then it
is guaranteed that within 5 time units Harry
will reach t.

There are no more blue nodes to be relaxed,
so we relax the red node t.

This updates the blue values of nodes 3 and 4:
if the slow side gets to choose in node 4, it is
guaranteed that getting to t will take at least
5 time units

Node t is now finished. Now the blue node 3
can be relaxed, and we know the choice of the
slow brain half.

This updates the red value of node 1.

Now the red node 3 can be relaxed (it has a
smaller value than the red node 4

This updates the blue node 4.

This finishes node 3 completely.Now the blue node 4 is updated.

This updates the red node s, giving a first
path of distance 22.

The red node 1 has distance 3, the red node 4
has distance 5, so we relax 1 first.
The red node 4 is now relaxed. Node 4 is
completely finished.
The blue node 1 is now relaxed. Node 1 is
completely finished.

We finish by relaxing the nodes of s, finding a
distance of 8 and completing the full decision
graph.

— October 27, 2018 20 / 50



ttt

t

3

3

333

4

4444

1

111

s

sss

2

2 1

1 5

20

1

∞

228

0

56

∞

3
0

36

∞

1

0

1

∞

5

0

5

21

0
0

Give every node two states: a red state for the
path to t given that the fast half chooses at
this node, and a blue state for the path to t
given that the slow half chooses.

We can relax a blue node if we’ve relaxed all
of its red parents (formerly children). If no
blue nodes can be relaxed, then relax the node
with the smallest value (just like Dijkstra).
Relaxing means pushing your distance to all
children of the other colour.

We are going to look at this process for an
acyclic graph, but this also works for cyclic
graphs.

We can relax the blue node t as it has no
parents.

Red nodes 3 and 4 have updated distances: if
the fast half gets to choose in node 4, then it
is guaranteed that within 5 time units Harry
will reach t.

There are no more blue nodes to be relaxed,
so we relax the red node t.

This updates the blue values of nodes 3 and 4:
if the slow side gets to choose in node 4, it is
guaranteed that getting to t will take at least
5 time units

Node t is now finished. Now the blue node 3
can be relaxed, and we know the choice of the
slow brain half.

This updates the red value of node 1.

Now the red node 3 can be relaxed (it has a
smaller value than the red node 4

This updates the blue node 4.

This finishes node 3 completely.Now the blue node 4 is updated.

This updates the red node s, giving a first
path of distance 22.

The red node 1 has distance 3, the red node 4
has distance 5, so we relax 1 first.
The red node 4 is now relaxed. Node 4 is
completely finished.
The blue node 1 is now relaxed. Node 1 is
completely finished.

We finish by relaxing the nodes of s, finding a
distance of 8 and completing the full decision
graph.

— October 27, 2018 20 / 50



ttt

t

33

33

3

4

4444

1

111

s

sss

2

2 1

1 5

20

1

∞

228

0

56

∞

3

0

3

6

∞

1

0

1

∞

5

05

21

0
0

Give every node two states: a red state for the
path to t given that the fast half chooses at
this node, and a blue state for the path to t
given that the slow half chooses.

We can relax a blue node if we’ve relaxed all
of its red parents (formerly children). If no
blue nodes can be relaxed, then relax the node
with the smallest value (just like Dijkstra).
Relaxing means pushing your distance to all
children of the other colour.

We are going to look at this process for an
acyclic graph, but this also works for cyclic
graphs.

We can relax the blue node t as it has no
parents.

Red nodes 3 and 4 have updated distances: if
the fast half gets to choose in node 4, then it
is guaranteed that within 5 time units Harry
will reach t.

There are no more blue nodes to be relaxed,
so we relax the red node t.

This updates the blue values of nodes 3 and 4:
if the slow side gets to choose in node 4, it is
guaranteed that getting to t will take at least
5 time units

Node t is now finished. Now the blue node 3
can be relaxed, and we know the choice of the
slow brain half.

This updates the red value of node 1.

Now the red node 3 can be relaxed (it has a
smaller value than the red node 4

This updates the blue node 4.

This finishes node 3 completely.Now the blue node 4 is updated.

This updates the red node s, giving a first
path of distance 22.

The red node 1 has distance 3, the red node 4
has distance 5, so we relax 1 first.
The red node 4 is now relaxed. Node 4 is
completely finished.
The blue node 1 is now relaxed. Node 1 is
completely finished.

We finish by relaxing the nodes of s, finding a
distance of 8 and completing the full decision
graph.

— October 27, 2018 20 / 50



ttt

t

33

3

3

3 4

4444

1

111

s

sss

2

2 1

1 5

20

1

∞

228

0

56

∞

3

0

3

6

∞

1

0

1

∞

5

05

21

0
0

Give every node two states: a red state for the
path to t given that the fast half chooses at
this node, and a blue state for the path to t
given that the slow half chooses.

We can relax a blue node if we’ve relaxed all
of its red parents (formerly children). If no
blue nodes can be relaxed, then relax the node
with the smallest value (just like Dijkstra).
Relaxing means pushing your distance to all
children of the other colour.

We are going to look at this process for an
acyclic graph, but this also works for cyclic
graphs.

We can relax the blue node t as it has no
parents.

Red nodes 3 and 4 have updated distances: if
the fast half gets to choose in node 4, then it
is guaranteed that within 5 time units Harry
will reach t.

There are no more blue nodes to be relaxed,
so we relax the red node t.

This updates the blue values of nodes 3 and 4:
if the slow side gets to choose in node 4, it is
guaranteed that getting to t will take at least
5 time units

Node t is now finished. Now the blue node 3
can be relaxed, and we know the choice of the
slow brain half.

This updates the red value of node 1.

Now the red node 3 can be relaxed (it has a
smaller value than the red node 4

This updates the blue node 4.

This finishes node 3 completely.

Now the blue node 4 is updated.

This updates the red node s, giving a first
path of distance 22.

The red node 1 has distance 3, the red node 4
has distance 5, so we relax 1 first.
The red node 4 is now relaxed. Node 4 is
completely finished.
The blue node 1 is now relaxed. Node 1 is
completely finished.

We finish by relaxing the nodes of s, finding a
distance of 8 and completing the full decision
graph.

— October 27, 2018 20 / 50



ttt

t

33

3

3

3

4

4

444

1

111

s

sss

2

2 1

1 5

20

1

∞

22

8

0

56

∞

3

0

3

6

∞

1

0

1

∞

5

05

21

0
0

Give every node two states: a red state for the
path to t given that the fast half chooses at
this node, and a blue state for the path to t
given that the slow half chooses.

We can relax a blue node if we’ve relaxed all
of its red parents (formerly children). If no
blue nodes can be relaxed, then relax the node
with the smallest value (just like Dijkstra).
Relaxing means pushing your distance to all
children of the other colour.

We are going to look at this process for an
acyclic graph, but this also works for cyclic
graphs.

We can relax the blue node t as it has no
parents.

Red nodes 3 and 4 have updated distances: if
the fast half gets to choose in node 4, then it
is guaranteed that within 5 time units Harry
will reach t.

There are no more blue nodes to be relaxed,
so we relax the red node t.

This updates the blue values of nodes 3 and 4:
if the slow side gets to choose in node 4, it is
guaranteed that getting to t will take at least
5 time units

Node t is now finished. Now the blue node 3
can be relaxed, and we know the choice of the
slow brain half.

This updates the red value of node 1.

Now the red node 3 can be relaxed (it has a
smaller value than the red node 4

This updates the blue node 4.

This finishes node 3 completely.

Now the blue node 4 is updated.

This updates the red node s, giving a first
path of distance 22.

The red node 1 has distance 3, the red node 4
has distance 5, so we relax 1 first.
The red node 4 is now relaxed. Node 4 is
completely finished.
The blue node 1 is now relaxed. Node 1 is
completely finished.

We finish by relaxing the nodes of s, finding a
distance of 8 and completing the full decision
graph.

— October 27, 2018 20 / 50



ttt

t

33

3

3

3

44

4

44

1

1

11

s

sss

2

2 1

1 5

20

1

∞

22

8
0

5

6

∞

3

0

3

6

∞

1

0

1

∞

5

05

21

0
0

Give every node two states: a red state for the
path to t given that the fast half chooses at
this node, and a blue state for the path to t
given that the slow half chooses.

We can relax a blue node if we’ve relaxed all
of its red parents (formerly children). If no
blue nodes can be relaxed, then relax the node
with the smallest value (just like Dijkstra).
Relaxing means pushing your distance to all
children of the other colour.

We are going to look at this process for an
acyclic graph, but this also works for cyclic
graphs.

We can relax the blue node t as it has no
parents.

Red nodes 3 and 4 have updated distances: if
the fast half gets to choose in node 4, then it
is guaranteed that within 5 time units Harry
will reach t.

There are no more blue nodes to be relaxed,
so we relax the red node t.

This updates the blue values of nodes 3 and 4:
if the slow side gets to choose in node 4, it is
guaranteed that getting to t will take at least
5 time units

Node t is now finished. Now the blue node 3
can be relaxed, and we know the choice of the
slow brain half.

This updates the red value of node 1.

Now the red node 3 can be relaxed (it has a
smaller value than the red node 4

This updates the blue node 4.

This finishes node 3 completely.Now the blue node 4 is updated.

This updates the red node s, giving a first
path of distance 22.

The red node 1 has distance 3, the red node 4
has distance 5, so we relax 1 first.

The red node 4 is now relaxed. Node 4 is
completely finished.
The blue node 1 is now relaxed. Node 1 is
completely finished.

We finish by relaxing the nodes of s, finding a
distance of 8 and completing the full decision
graph.

— October 27, 2018 20 / 50



ttt

t

33

3

3

3

444

4

4

1

111

s

sss

2

2 1

1 5

20

1

∞

22

8
05

6

∞

3

03

6

∞

1

0

1

∞

5

05

21

0
0

Give every node two states: a red state for the
path to t given that the fast half chooses at
this node, and a blue state for the path to t
given that the slow half chooses.

We can relax a blue node if we’ve relaxed all
of its red parents (formerly children). If no
blue nodes can be relaxed, then relax the node
with the smallest value (just like Dijkstra).
Relaxing means pushing your distance to all
children of the other colour.

We are going to look at this process for an
acyclic graph, but this also works for cyclic
graphs.

We can relax the blue node t as it has no
parents.

Red nodes 3 and 4 have updated distances: if
the fast half gets to choose in node 4, then it
is guaranteed that within 5 time units Harry
will reach t.

There are no more blue nodes to be relaxed,
so we relax the red node t.

This updates the blue values of nodes 3 and 4:
if the slow side gets to choose in node 4, it is
guaranteed that getting to t will take at least
5 time units

Node t is now finished. Now the blue node 3
can be relaxed, and we know the choice of the
slow brain half.

This updates the red value of node 1.

Now the red node 3 can be relaxed (it has a
smaller value than the red node 4

This updates the blue node 4.

This finishes node 3 completely.Now the blue node 4 is updated.

This updates the red node s, giving a first
path of distance 22.

The red node 1 has distance 3, the red node 4
has distance 5, so we relax 1 first.

The red node 4 is now relaxed. Node 4 is
completely finished.

The blue node 1 is now relaxed. Node 1 is
completely finished.

We finish by relaxing the nodes of s, finding a
distance of 8 and completing the full decision
graph.

— October 27, 2018 20 / 50



ttt

t

33

3

3

3

4444

4

11

1

1

s

sss

2

2 1

1 5

20

1

∞22

8

05

6

∞

3

03

6

∞

1

0

1

∞

5

05

21

0
0

Give every node two states: a red state for the
path to t given that the fast half chooses at
this node, and a blue state for the path to t
given that the slow half chooses.

We can relax a blue node if we’ve relaxed all
of its red parents (formerly children). If no
blue nodes can be relaxed, then relax the node
with the smallest value (just like Dijkstra).
Relaxing means pushing your distance to all
children of the other colour.

We are going to look at this process for an
acyclic graph, but this also works for cyclic
graphs.

We can relax the blue node t as it has no
parents.

Red nodes 3 and 4 have updated distances: if
the fast half gets to choose in node 4, then it
is guaranteed that within 5 time units Harry
will reach t.

There are no more blue nodes to be relaxed,
so we relax the red node t.

This updates the blue values of nodes 3 and 4:
if the slow side gets to choose in node 4, it is
guaranteed that getting to t will take at least
5 time units

Node t is now finished. Now the blue node 3
can be relaxed, and we know the choice of the
slow brain half.

This updates the red value of node 1.

Now the red node 3 can be relaxed (it has a
smaller value than the red node 4

This updates the blue node 4.

This finishes node 3 completely.Now the blue node 4 is updated.

This updates the red node s, giving a first
path of distance 22.

The red node 1 has distance 3, the red node 4
has distance 5, so we relax 1 first.
The red node 4 is now relaxed. Node 4 is
completely finished.

The blue node 1 is now relaxed. Node 1 is
completely finished.

We finish by relaxing the nodes of s, finding a
distance of 8 and completing the full decision
graph.

— October 27, 2018 20 / 50



ttt

t

33

3

3

3

4444

4

111

1

s

s

ss

2

2 1

1 5

20

1

∞22

8

05

6

∞

3

03

6

∞

1

0

1

∞

5

05

21

0
0

Give every node two states: a red state for the
path to t given that the fast half chooses at
this node, and a blue state for the path to t
given that the slow half chooses.

We can relax a blue node if we’ve relaxed all
of its red parents (formerly children). If no
blue nodes can be relaxed, then relax the node
with the smallest value (just like Dijkstra).
Relaxing means pushing your distance to all
children of the other colour.

We are going to look at this process for an
acyclic graph, but this also works for cyclic
graphs.

We can relax the blue node t as it has no
parents.

Red nodes 3 and 4 have updated distances: if
the fast half gets to choose in node 4, then it
is guaranteed that within 5 time units Harry
will reach t.

There are no more blue nodes to be relaxed,
so we relax the red node t.

This updates the blue values of nodes 3 and 4:
if the slow side gets to choose in node 4, it is
guaranteed that getting to t will take at least
5 time units

Node t is now finished. Now the blue node 3
can be relaxed, and we know the choice of the
slow brain half.

This updates the red value of node 1.

Now the red node 3 can be relaxed (it has a
smaller value than the red node 4

This updates the blue node 4.

This finishes node 3 completely.Now the blue node 4 is updated.

This updates the red node s, giving a first
path of distance 22.

The red node 1 has distance 3, the red node 4
has distance 5, so we relax 1 first.
The red node 4 is now relaxed. Node 4 is
completely finished.
The blue node 1 is now relaxed. Node 1 is
completely finished.

We finish by relaxing the nodes of s, finding a
distance of 8 and completing the full decision
graph.

— October 27, 2018 20 / 50



ttt

t

33

3

3

3

4444

4

111

1

ss

s

s

2

2 1

1 5

20

1

∞22

8

05

6

∞

3

03

6

∞

1

0

1

∞

5

05

21

0
0

Give every node two states: a red state for the
path to t given that the fast half chooses at
this node, and a blue state for the path to t
given that the slow half chooses.

We can relax a blue node if we’ve relaxed all
of its red parents (formerly children). If no
blue nodes can be relaxed, then relax the node
with the smallest value (just like Dijkstra).
Relaxing means pushing your distance to all
children of the other colour.

We are going to look at this process for an
acyclic graph, but this also works for cyclic
graphs.

We can relax the blue node t as it has no
parents.

Red nodes 3 and 4 have updated distances: if
the fast half gets to choose in node 4, then it
is guaranteed that within 5 time units Harry
will reach t.

There are no more blue nodes to be relaxed,
so we relax the red node t.

This updates the blue values of nodes 3 and 4:
if the slow side gets to choose in node 4, it is
guaranteed that getting to t will take at least
5 time units

Node t is now finished. Now the blue node 3
can be relaxed, and we know the choice of the
slow brain half.

This updates the red value of node 1.

Now the red node 3 can be relaxed (it has a
smaller value than the red node 4

This updates the blue node 4.

This finishes node 3 completely.Now the blue node 4 is updated.

This updates the red node s, giving a first
path of distance 22.

The red node 1 has distance 3, the red node 4
has distance 5, so we relax 1 first.
The red node 4 is now relaxed. Node 4 is
completely finished.
The blue node 1 is now relaxed. Node 1 is
completely finished.

We finish by relaxing the nodes of s, finding a
distance of 8 and completing the full decision
graph.

— October 27, 2018 20 / 50



ttt

t

33

3

3

3

4444

4

111

1

sss

s

2

2 1

1 5

20

1

∞22

8

05

6

∞

3

03

6

∞

1

0

1

∞

5

05

21

0
0

Give every node two states: a red state for the
path to t given that the fast half chooses at
this node, and a blue state for the path to t
given that the slow half chooses.

We can relax a blue node if we’ve relaxed all
of its red parents (formerly children). If no
blue nodes can be relaxed, then relax the node
with the smallest value (just like Dijkstra).
Relaxing means pushing your distance to all
children of the other colour.

We are going to look at this process for an
acyclic graph, but this also works for cyclic
graphs.

We can relax the blue node t as it has no
parents.

Red nodes 3 and 4 have updated distances: if
the fast half gets to choose in node 4, then it
is guaranteed that within 5 time units Harry
will reach t.

There are no more blue nodes to be relaxed,
so we relax the red node t.

This updates the blue values of nodes 3 and 4:
if the slow side gets to choose in node 4, it is
guaranteed that getting to t will take at least
5 time units

Node t is now finished. Now the blue node 3
can be relaxed, and we know the choice of the
slow brain half.

This updates the red value of node 1.

Now the red node 3 can be relaxed (it has a
smaller value than the red node 4

This updates the blue node 4.

This finishes node 3 completely.Now the blue node 4 is updated.

This updates the red node s, giving a first
path of distance 22.

The red node 1 has distance 3, the red node 4
has distance 5, so we relax 1 first.
The red node 4 is now relaxed. Node 4 is
completely finished.
The blue node 1 is now relaxed. Node 1 is
completely finished.

We finish by relaxing the nodes of s, finding a
distance of 8 and completing the full decision
graph.

— October 27, 2018 20 / 50



Kingpin Escape
AC before freeze: 2 / 19

First solve after 179 minutes

— October 27, 2018 21 / 50



Kingpin Escape

Given a tree T , add a minimal number of edges to make it
biconnected.

We need to add an edge to every leaf, so ans ≥ d`/2e.
WA: Matching (3, 5), (4, 6) won’t work:

1 2

3 4 5 6

Intuition: match far away leaves.

— October 27, 2018 22 / 50



Kingpin Escape

Given a tree T , add a minimal number of edges to make it
biconnected.
We need to add an edge to every leaf, so ans ≥ d`/2e.
WA: Matching (3, 5), (4, 6) won’t work:

1 2

3 4 5 6

Intuition: match far away leaves.

— October 27, 2018 22 / 50



Kingpin Escape

Given a tree T , add a minimal number of edges to make it
biconnected.
We need to add an edge to every leaf, so ans ≥ d`/2e.
WA: Matching (3, 5), (4, 6) won’t work:

1 2

3 4 5 6

Intuition: match far away leaves.

— October 27, 2018 22 / 50



Kingpin Escape

Solution
Do a DFS and number the leaves in order v1, v2, . . . , v`.
Match vi with vi+b`/2c and the optional leftover v` with any
other vertex.
Hence ans = d`/2e.

Proof: for every edge e ∈ T , the numbers on each side form
intervals L and R (modulo `).
Observation: (L + b`/2c) ∩ R 6= ∅

— October 27, 2018 23 / 50



Kingpin Escape

Solution
Do a DFS and number the leaves in order v1, v2, . . . , v`.
Match vi with vi+b`/2c and the optional leftover v` with any
other vertex.
Hence ans = d`/2e.
Proof: for every edge e ∈ T , the numbers on each side form
intervals L and R (modulo `).
Observation: (L + b`/2c) ∩ R 6= ∅

— October 27, 2018 23 / 50



Entirely Unsorted Sequences
AC before freeze: 0 / 0

— October 27, 2018 24 / 50



Entirely Unsorted Sequences (1)
In a sequence of numbers, an element is sorted if there is no lower
number after and no higher number before.

1
1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

Given some integers, how many sequences without sorted elements
can you make?

— October 27, 2018 25 / 50



Entirely Unsorted Sequences (1)
In a sequence of numbers, an element is sorted if there is no lower
number after and no higher number before.

1
1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

Given some integers, how many sequences without sorted elements
can you make?

— October 27, 2018 25 / 50



Entirely Unsorted Sequences (1)
In a sequence of numbers, an element is sorted if there is no lower
number after and no higher number before.

1
1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

Given some integers, how many sequences without sorted elements
can you make?

— October 27, 2018 25 / 50



Entirely Unsorted Sequences (1)
In a sequence of numbers, an element is sorted if there is no lower
number after and no higher number before.

1
1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

Given some integers, how many sequences without sorted elements
can you make?

— October 27, 2018 25 / 50



Entirely Unsorted Sequences (2)

We solve the problem in two steps:
1 Solve the problem for all distinct elements.
2 Check what needs to change for possibly repeated elements.

(From now on, assume the sequence is sorted.)

— October 27, 2018 26 / 50



Entirely Unsorted Sequences (3)

If all elements are distinct, WLOG they are 1, . . . ,N.
Let P[n] be the number of EUSs you can make with 1, . . . , n.
Assume you know P[0], . . . ,P[k − 1], and let’s compute P[k].

P[k] = k!− (# of sequences with ≥ 1 sorted element)

= k!−
k∑

i=1
(# of sequences with first sorted element at i)

What does a sequence with first sorted element at index i look like?

— October 27, 2018 27 / 50



Entirely Unsorted Sequences (4)

1
1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

It has value i at index i .
The first i − 1 elements are an EUS on 1, . . . , i − 1.
The last k − i elements are any permutation of i + 1, . . . , k.

— October 27, 2018 28 / 50



Entirely Unsorted Sequences (5)

P[k] = k!− (# of sequences with ≥ 1 sorted element)

= k!−
k∑

i=1
(# of sequences with first sorted element at i)

= k!−
k∑

i=1
P[i − 1]× (k − i)!

You can do this computation in O(k), for a total run-time of
O(N2) (as long as you reduce intermediate numbers mod 109 + 9).

— October 27, 2018 29 / 50



Entirely Unsorted Sequences (6)
What about repeated elements? The whole analysis works,
only one thing changes:

P[k] = k!−
k∑

i=1
P[i − 1]× (k − i)!

We need to replace this with the number of permutations of
a1, . . . , ak respectively ai+1, . . . , ak .
The number of permutations is given by a multinomial:

perm(1, 1, 2, 2, 2, 3, 4, 4) = 8!
2!× 3!× 1!× 2! .

If we add just one number, we can compute the new
multinomial in O(1), which is fast enough for O(N2):

perm(1, 1, 2, 2, 2, 3, 4, 4, 4) = 8!×9
2!× 3!× 1!× 2!×3 .

— October 27, 2018 30 / 50



In case of an Invasion, please...
AC before freeze: 0 / 6

First solve after 6 minutes

— October 27, 2018 31 / 50



In case of an Invasion, please... (1)

Problem
Given a road network with n ≤ 105 locations with people, and
s ≤ 10 shelters, find the fastest way to move everyone to a shelter.

— October 27, 2018 32 / 50



In case of an Invasion, please... (2)

Solution
If we can move everyone to a shelter in t time, we can also
move everyone to a shelter in t + 1 time (just let everyone
stand still for one time unit).

We are asked to find the smallest feasible t.

This is exactly the structure of a binary search. So let’s try solving
the decision problem for a fixed t = T and then do a binary search.

— October 27, 2018 33 / 50



In case of an Invasion, please... (3)

Solution
The structure of the graph is not particularly relevant, since edges
have no maximal capacity anyway. We can preprocess by running
Dijkstra from each shelter, in O(s(n + m) log(m)).

Now for shelter i and location j we can send everyone in j to i in
time T if d(i , j) ≤ T .

The result is a classical flow problem.

— October 27, 2018 34 / 50



In case of an Invasion, please... (4)
Let’s build the corresponding flow graph:

S
...

c1

c2

cs
...

T

p1

p3

pn

shelters
locations

∞

Possible if and only if the flow is
∑

i pi , i.e. every location is
saturated.

— October 27, 2018 35 / 50



In case of an Invasion, please... (5)

Verdict: Time Limit Exceeded. This graph is really large, it has
s + n + 2 vertices, which can be a bit more than 105, and up to sn
edges, which can be up to 106.

A decent flow solution will run in O(V 2E ). Runtime of flow
algorithms can be misleading (usually much faster) but this is
really pushing it.

Idea: exploit the structure of the graph, one side is really small
s ≤ 10.

— October 27, 2018 36 / 50



In case of an Invasion, please... (6)

Lots of equivalent solutions. Focus on locations 1, 2, 3.

S
...

c1

c2

cs

1

2

3
...

— October 27, 2018 37 / 50



In case of an Invasion, please... (6)

Lots of equivalent solutions. Focus on locations 1, 2, 3.

S
...

c1

c2

cs

1

2

3
...

— October 27, 2018 38 / 50



In case of an Invasion, please... (6)

Lots of equivalent solutions. Focus on locations 1, 2, 3.

S
...

c1

c2

cs

1

2

3
...

— October 27, 2018 39 / 50



In case of an Invasion, please... (6)

If some locations have the same neighbour set (i.e., set of
reachable shelters), we can safely merge them into a single location
with the sum of their populations. (note: only merge for this
binary search T !)

S
...

c1

c2

cs

1

2

3
...

}
Nbrs are exactly (1, 2)

— October 27, 2018 40 / 50



In case of an Invasion, please... (7)
Merge:

S
...

c1

c2

cs

... T
p1 + p2 + p3

pn

shelters
locations

∞

The resulting right hand side has at most 2s vertices, a factor of
1000 less. Dinic will run in time.
Homework exercise: Solve without flow, but use Hall’s marriage
theorem.

— October 27, 2018 41 / 50



Driver Disagreement
AC before freeze: 0 / 8

— October 27, 2018 42 / 50



Driver Disagreement (1)

Problem
Given a finite state machine over the alphabet Σ = {l , r}, with
each state colored white or black, and two initial states a and b.
Find the shortest word (i.e. lrlrrlr ...) that distinguishes them.
For example:

1 2

3 4
a

b

l r

l

r

lr

l

r

Following “r” moves both
a and b to 1.

But following “lr”:
1 2

3 4
a

b

l r

l

r

lr

l

r

— October 27, 2018 43 / 50



Driver Disagreement (2)
Solution
Let’s forget the shortest path for a second and try to decide
whether an answer exists. The simplest solution: BFS.

1: Q ← (a, b) . Enqueue (a, b)
2: S ← ∅ . Visited states
3: while Q 6= ∅ do
4: (a′, b′)← Q . Dequeue a state
5: if col(a′) 6= col(b′) then . Found a solution?
6: return True
7: if (a′, b′) ∈ S then . Seen before?
8: continue
9: S ← S ∪ {(a′, b′)} . Mark as visited

10: Q ← (l(a′), l(b′)), (r(a′), r(b′)) . Enqueue l/r turns.
11: return False . Found nothing

— October 27, 2018 44 / 50



Driver Disagreement (3)
Verdict: Time Limit Exceeded. Consider the following
automaton:

L1 L2 L3 L4

U1 U2 U3 U4

· · ·

· · ·

a

b

l

r

l

r

l

r

l

r

l

r

l

r

l

r

l

r

BFS will visit every state (Li ,Uj) for i , j ≥ 1, so O(n2) states
asymptotically.

— October 27, 2018 45 / 50



Driver Disagreement (4)

Solution
Do we have to check all states? Suppose that somehow we knew
that a and b are indistinguishable, and so are b and c. Should we
bother checking a and c?

Suppose following some path llrlrrlr ... from a ends in a white
vertex, while following it from c ends in a black vertex. What
happens when we follow this path from b?

A contradiction, so a and c must also be indistinguishable. In
other words, indistinguishability is an equivalence relation.

— October 27, 2018 46 / 50



Driver Disagreement (4)

Solution
Do we have to check all states? Suppose that somehow we knew
that a and b are indistinguishable, and so are b and c. Should we
bother checking a and c?

Suppose following some path llrlrrlr ... from a ends in a white
vertex, while following it from c ends in a black vertex. What
happens when we follow this path from b?

A contradiction, so a and c must also be indistinguishable. In
other words, indistinguishability is an equivalence relation.

— October 27, 2018 46 / 50



Driver Disagreement (4)

Solution
Do we have to check all states? Suppose that somehow we knew
that a and b are indistinguishable, and so are b and c. Should we
bother checking a and c?

Suppose following some path llrlrrlr ... from a ends in a white
vertex, while following it from c ends in a black vertex. What
happens when we follow this path from b?

A contradiction, so a and c must also be indistinguishable. In
other words, indistinguishability is an equivalence relation1.

1Reflexivity and symmetry are trivial.
— October 27, 2018 46 / 50



Driver Disagreement (5)
Solution
This would reduce the number of states we have to care about, but
there is a problem: even knowing that (a, b) and (b, c) are
indistinguishable might require traversing the whole graph.

Key observation: if (a, b) and (b, c) have passed through our
BFS queue, we can just pretend they are indistinguishable and
discard (a, c).

Why does this work? Either:
We were right and all of a, b and c are indistinguishable, and
we correctly discarded (a, c).
We were wrong and (a, c) are not indistinguishable. But then
so are one of (a, b) and (b, c), and they were already
expanded by the BFS, so we will still get the correct answer.

— October 27, 2018 47 / 50



Driver Disagreement (5)
Solution
This would reduce the number of states we have to care about, but
there is a problem: even knowing that (a, b) and (b, c) are
indistinguishable might require traversing the whole graph.

Key observation: if (a, b) and (b, c) have passed through our
BFS queue, we can just pretend they are indistinguishable and
discard (a, c).

Why does this work?

Either:
We were right and all of a, b and c are indistinguishable, and
we correctly discarded (a, c).
We were wrong and (a, c) are not indistinguishable. But then
so are one of (a, b) and (b, c), and they were already
expanded by the BFS, so we will still get the correct answer.

— October 27, 2018 47 / 50



Driver Disagreement (5)
Solution
This would reduce the number of states we have to care about, but
there is a problem: even knowing that (a, b) and (b, c) are
indistinguishable might require traversing the whole graph.

Key observation: if (a, b) and (b, c) have passed through our
BFS queue, we can just pretend they are indistinguishable and
discard (a, c).

Why does this work? Either:
We were right and all of a, b and c are indistinguishable, and
we correctly discarded (a, c).
We were wrong and (a, c) are not indistinguishable. But then
so are one of (a, b) and (b, c), and they were already
expanded by the BFS, so we will still get the correct answer.

— October 27, 2018 47 / 50



Driver Disagreement (6)
Solution
We can easily maintain the equivalence relation of
indistinguishability using a disjoint-set datastructure.

1: Q ← (a, b) . Enqueue (a, b)
2: U ← {{1}, {2}, . . . , {n} } . Initialize UnionFind.
3: while Q 6= ∅ do
4: (a′, b′)← Q . Dequeue a state
5: if col(a′) 6= col(b′) then . Found a solution?
6: return True
7: if U.same(a′, b′) then . Indistinguishable?
8: continue
9: U.merge(a′, b′) . Mark a′ and b′ indist.

10: Q ← (l(a′), l(b′)), (r(a′), r(b′)) . Enqueue l/r turns.
11: return False . Found nothing

— October 27, 2018 48 / 50



Driver Disagreement (7)

Solution
Let’s analyze this algorithm:

If we discard some (a′, b′), then there must be some
(a′, u1), (u1, u2), . . . (uk , b′) having already passed through the
queue. If a′ and b′ are distinguishable, so is one of these pairs.
So there is no need to consider (a′, b′).
Each time we expand a state (a′, b′) we also merge two sets.
This can happen at most n − 1 times, so the runtime is
O(nα(n)).
We get the shortest path for free by construction (BFS).

Corollary: if the answer exists, it is at most n − 1.

— October 27, 2018 49 / 50



Some statistics

Number of commits to the repository: 1015.
Total number of test cases: 467.
Percentage of AC jury solutions: 45.07%.

— October 27, 2018 50 / 50


