
Solutions

Preliminaries BAPC 2017

University of Amsterdam

September 2017

Solutions — Preliminaries BAPC 2017 — September 2017 1 / 17



Abandoned Animal (1)

Given is an ordered list of items, and every item has a list of
numbers (i.e. the stores where they can be bought).
Can we choose a single number in this list for every item such
that the list is non-decreasing. Also, can this be done
uniquely?
The first question is relatively easy: starting from the front,
greedily adhere the lowest number to each item that is at
least the previous number.
To determine whether it is unique, there is an elegant solution:
repeat the process, but start from the rear, and greedily
choose the highest number. If you get the same path as in the
previous step, the answer is unique, otherwise ambiguous.

Solutions — Preliminaries BAPC 2017 — September 2017 2 / 17



Abandoned Animal (2)

1 2 3 4

1

2

3

4

item number

store number

1 2 3 4

1

2

3

4

item number

store number

1 2 3 4

1

2

3

4

item number

store number

Figure: Finding the lower path.

1 2 3 4

1

2

3

4

item number

store number

1 2 3 4

1

2

3

4

item number

store number

Figure: Finding the upper path.Solutions — Preliminaries BAPC 2017 — September 2017 3 / 17



Booming Business (1)
Want to count Bonsai trees with w edges and height h.
Let Tn,k be the number with n edges and height at most k.
Then we want Tw ,h − Tw ,h−1.
We can split each tree in the left subtree and the rest of the
tree.

So we write Tn,k as Ti ,k−1 × Tn−i ,k . This gives

Tn,k =
n−1∑
i=1

Ti ,k−1 × Tn−i ,k .

Now set up the base cases and use dynamic programming.

Solutions — Preliminaries BAPC 2017 — September 2017 4 / 17



Booming Business (2)

This solution is a variant of counting rooted trees without
height restriction using Catalan numbers.
It runs in O(hw2), which is fast enough.
Other solutions include:

Counting by removing the rightmost edge from the tree.
Counting by considering the outline of a tree (up, up, down,
up, ...).

These can even be done in O(hw).

Solutions — Preliminaries BAPC 2017 — September 2017 5 / 17



Crowd Control

Find path with max capacity and remove adjacent edges.
Multiple ways to solve, e.g.

Find max spanning tree and then perform a breadth-first on
the tree to filter the edges;
Perform a variant of Dijkstra where the optimal path is defined
by the capacity.

Be careful that the output does not mention an edge to
remove multiple times!

Solutions — Preliminaries BAPC 2017 — September 2017 6 / 17



Disastrous Doubling

Double number of bacteria for each hour.
Start modulo when number of bacteria ≥ maximum used in
one experiment.
Make sure that you don’t get negative results.

Solutions — Preliminaries BAPC 2017 — September 2017 7 / 17



Envious Exponents

Given N, k, find the smallest M > N such that the binary
representation of M contains exactly k 1s.
Many valid approaches. For example: let A = N + 1, and let
b be the number of 1s in the binary representation of A:

If b ≤ k, we simply flip the k − b least significant 0s of A.
If b > k, find the kth most significant 1 at some position i .
We flip all less significant 1s of A, and add 2i to A. Then go
to the above step.

This solution may seem arcane, but you can arrive at this or a
similar solution pretty easily by reasoning about what happens
when you just keep incrementing N by 1 until it has exactly k
1s.

Solutions — Preliminaries BAPC 2017 — September 2017 8 / 17



Fidget Spinner

Exactly two colours will be fully visible.
We can calculate the angle both these
colours span.
By the inscribed-angle theorem for circles,
we know that the camera must lie on the
intersection of two circles.
We can easily find the centres of these
circles.
Find a linear formula for the intersection
point, using that they intersect in the
origin (or do a circle-circle intersection).
Edge case when the circles coincide.

M

Solutions — Preliminaries BAPC 2017 — September 2017 9 / 17



Ghostbusters

The keyboard is a bipartite graph (V , E ) where rows and
columns are vertices V and signals define edges E .
Probability that a key is pressed is < 0.5 so the most likely set
of pressed keys will have minimal size.
Solution is one of the most likely subsets of edges E ′ such
that (V , E ′) has the same connected components as (V , E ).
Compute a maximum spanning tree of the graph and output
the keys in lexicographical order.

Solutions — Preliminaries BAPC 2017 — September 2017 10 / 17



Horror Film Night

Find the maximum number of films Emma and Marcos can
watch together.
A greedy solution works.
Go through the films liked by at least one person in sorted
order.
Watch the current film whenever possible.
Do not forget to sort the films first!

Marcos

Emma

Solutions — Preliminaries BAPC 2017 — September 2017 11 / 17



Intelligence Infection (1)
Divide the graph of spies into groups of spies that can all
reach each other.
This can be done by finding all the strongly connected
components (SCCs)

Naive algorithm: O(n2) - too slow
Kosaraju’s or Tarjan’s algorithm: O(n) - fast enough

Form the condensation graph of the SCCs.

Solutions — Preliminaries BAPC 2017 — September 2017 12 / 17



Intelligence Infection (2)
An SCC is dirty if:

One of the spies in the SCC is an enemy spy
Another dirty SCC can reach this SCC - use DFS

We need to privately message all non-enemy spies in a dirty
SCC
Next, to find out who we need to message publicly:

Remove all the dirty SCCs from the condensation graph
Publicly message exactly one spy in an SCC that has indegree
zero in the resulting condensation graph.

Solutions — Preliminaries BAPC 2017 — September 2017 13 / 17



Journal Editing

Find a correct proof of the main theorem.
Dynamic programming over all subsets of theorems:
For each subset S, sorted by size, if we can prove the
theorems in this set:

Loop over all unproven theorems T (not in S)
If we can prove the new theorem T using theorems in S,
update the minimal length of proving S ∪ {T}.

Find the set S with T0 ∈ S with the shortest proof.
Beware that cyclic dependencies are not allowed!
Runtime is O(poly(n)2n).

Solutions — Preliminaries BAPC 2017 — September 2017 14 / 17



Knight Marathon

Distance between the knight and the capital can be very large
for a search algorithm.
Most of the moves will consist of just two types of moves, e.g.
(+1, +2) and (+2, +1).
We can check in constant time if two squares are connected
using only moves of these two types. In this case we can also
compute the number of steps needed to reach one from the
other in constant time.
There are always squares close to the capital such that the
knight’s starting location is connected to them in this way.
Use a search algorithm for squares near the capital and
compute the minimum total number of moves.

Solutions — Preliminaries BAPC 2017 — September 2017 15 / 17



Leapfrog (1)
We want to figure out the largest group of frogs that will get
together at the smallest position.
Since every jump distance d is prime, all frogs with different
jump distances can reach each other.
We can group frogs by their jump distance d and start
position modulo jump distance [x mod d ], since every frog in
group [x mod d ] can reach each other.
When two groups [x1 mod d ] and [x2 mod d ] both have the
largest size for their jump distance d , both groups are valid for
the largest tower.
Every combination of groups [x1 mod d1, x2 mod d2, . . . , xn
mod dn] will have their own unique smallest position they can
reach.

0 1 2 3 4 5 6 7 8 9 10 11 12

Solutions — Preliminaries BAPC 2017 — September 2017 16 / 17



Leapfrog (2)

Check every possible combination of viable groups [x1
mod d1, x2 mod d2, . . . , xn mod dn]. A reasonably efficient
enumeration is needed.
Determine for the combination the smallest position where the
frogs get together.

By using the Chinese Remainder Theorem
With a very efficient merging strategy, where you combine
groups together one by one.
You can not do this by simply checking all possible positions.

You can prune combinations:
By using starting positions as a lower bound for the smallest
position, comparing with your best known answer.
By using intermediate results from the Chinese Remainder
Theorem.

Overflow can be avoided when carefull!

Solutions — Preliminaries BAPC 2017 — September 2017 17 / 17


