Solutions

BAPC Preliminaries 2016

Delft University of Technology

September 24, 2016

A: Block Game

- Given stacks of height $a \geq b$, determine: can you win the game? There are three cases to consider.
1 If $b \mid a$, you win by clearing the pile.
2 If $b<a<2 b$, you have only one possible move, to ($b, a-b$).
3 If $a>2 b$, then you also always win. The position ($b, a \% b$) must be winning or losing.
- Losing: moving to ($b, a \% b$) is a winning move.
- Winning: moving to $(a \% b+b, b)$ is a winning move, because your opponent must move to ($b, a \% b$).

- So simulate the game as long as you are in case 2.

B: Chess Tournament

■ Is the set of reported chess matches inconsistent?
■ In a graph:

- Players for nodes;
- Undirected edges for ties;
- Directed edges for victories.
- Is there a cycle with at least one directed edge?
- Standard cycle detection algorithms only work on directed or undirected graphs, not mixed.
- Large input, so efficient solution is necessary!

B: Chess Tournament

- If two players are connected by a sequence of ties, they are of the same level.
- Collect all players into groups, based on who they tied with.
- Make a new graph with groups as nodes, and an edge from group A to group B if a player from A beat a player from B.
- Use flood fill algorithm. Complexity $\mathcal{O}(E)$.
- Look for cycles in this new graph. (Don't forget self-loops!)

■ Use a standard topological sort. Complexity: $\mathcal{O}(E)$.

C: Completing the Square

- This was the easy problem.
- We are given an isosceles right triangle.
- It is not so hard to determine the location of the missing fourth corner once we know where the right angle is:

- How to find the right angle? Two options:
- Look at the pairwise distances.
- Look at the angles. (Two vectors p and q make a right angle at the origin if and only if the inner product $p \cdot q$ is zero.)

D: Hamming Ellipses (1)

- Task: Count the number of length- n strings over q symbols where hammingdist $\left(p, f_{1}\right)+\operatorname{hammingdist}\left(p, f_{2}\right)=D$.
$f_{1}=01201, f_{2}=21210, p=10002$
- In positions where f_{1} matches f_{2}, the symbol in p may
$\square\left(k_{1}\right)$ match f_{1} and f_{2}, or
- $\left(k_{2}\right)$ differ from both f_{1} and f_{2} in $(q-1)$ ways.
- In positions where f_{1} differs from f_{2}, the symbol in p may
- (k_{3}) differ from both f_{1} and f_{2} in $(q-2)$ ways, or
- (k_{4}) differ from either f_{1} or f_{2} in 2 ways.
- Calculate $w=\operatorname{hammingdist}\left(f_{1}, f_{2}\right)$

■ For all k_{2}, k_{3}, k_{4} such that $k_{2} \leq n-w$ and $k_{3}+k_{4}=w$ and $2 k_{2}+2 k_{3}+k_{4}=D$, count the number of points on the ellipse:

$$
(q-1)^{k_{2}}(q-2)^{k_{3}} 2^{k_{4}}\binom{n-w}{k_{2}}\binom{w}{k_{3}}
$$

■ Must be very careful to avoid overflow of int64_t

D: Hamming Ellipses (2)

- Task: Count the number of length- n strings over q symbols where hammingdist $\left(p, f_{1}\right)+\operatorname{hammingdist}\left(p, f_{2}\right)=D$.
- Alternative solution: dynamic programming over D and n.
- Construct a table npoint $[k, d]=$ number of points at distance d, considering only the first k symbols of the strings.
- If f_{1} and f_{2} match at position k : $\operatorname{npoint}[k, d]=\operatorname{npoint}[k-1, d]+(q-1) \operatorname{npoin}[k-1, d-2]$
- If f_{1} and f_{2} differ at position k : npoint $[k, d]=(q-2)$ npoint $[k-1, d-2]+2 \operatorname{npoint}[k-1, d-1]$
- Final answer is npoint $[n, D]$
- Easier and safe against overflow.

E: Lost in the Woods

- What is the expected amount of time until your friend finds the exit?
- We can simulate the situation. Instead of simulating a single instance, we "simulate them all at once" as a Markov chain.
■ Begin by putting probability weight 1 on the starting node, and 0 on all other nodes.
- At each step, redistribute the probability at each node to the nodes around it.
- Remove the weight at the exit of the woods, and update the expected time. Then repeat.
- Stop once the probability weight left in the woods is small enough.

E: Lost in the Woods

- Put weight 1 on starting node, 0 elsewhere.
- At each step: redistribute, update expected time.

$E=0$

$E=0$

$E=\frac{2}{4}$

$E=\frac{7}{8}$

$E=\frac{11}{8}$

F: Memory Match

- Simulate the previous actions in the game and build a partial list of known card pictures.
Mark pairs that are already matched.
- Build a Map from picture name to card position.
- Each card is now in one of four states:
- (a) Already matched.
- (b) Picture known, location of matching card known.
- (c) Picture known, location of matching card unknown.
- (d) Picture unknown.
- Every two cards of type (b) can be matched.
- If there is an equal number of cards of types (c) and (d), every unknown card can be matched with a known card.
- Otherwise, if there are exactly two cards of type (d), they can be matched together.

G: Millionaire Madness

- Given a rectangular grid of heights, find the least $k \geq 0$ such that there is a path from one corner to another using a ladder at most k.
- There can be up to 10^{6} points in the grid - an efficient algorithm is necessary!
- Use a variant of Dijkstra's algorithm with the priority queue sorting on required ladder length (shortest first).
- Alternatively, use binary search and repeated flood fills (BFS) to find the least k for which you can traverse the grid.

H: Presidential Elections

- The problem is a variation on the classical 0-1 knapsack problem, which can be solved using dynamic programming.
- For each state i let A_{i} denote the number of additional votes required to win this state:

$$
A_{i}=\max (\underbrace{\left\lfloor\frac{C_{i}+F_{i}+U_{i}}{2}\right\rfloor+1}_{\text {the absolute majority }}-C_{i}, 0)
$$

If we have $A_{i}>U_{i}$, then there is no way to win this state.

- Take as knapsack items all states satisfying $A_{i} \leq U_{i}$. All other states are discarded. The i-th state has price A_{i} and value D_{i}.
- Find cheapest way to fill strictly more than half of your knapsack with these items (standard 0-1 knapsack algorithm).
- Time complexity: $\mathcal{O}\left(S \cdot D_{\text {tot }}\right)$, where $D_{\text {tot }}$ denotes the total number of delegates, all states combined.

I: Rock Band

■ Need to draw a vertical line such that each song only occurs on one side of the line:

4	5	2	1	6	8	3	7
5	2	4	8	6	1	3	7
2	5	4	8	1	6	3	7

- Find leftmost such line.

■ Can be solved greedily in $\mathcal{O}(M S)$ time. For instance:

- Precompute for each song its worst ranking.
- Start with a vertical line after the first column.
- Process all columns lying left of the line. If we encounter a song here whose worst ranking is right of the line, move the line further to the right, just beyond this worst ranking.
- Stop once we have a stable set (all columns left of the line have been processed).
- Other similar greedy solutions will also work.

I: Rock Band

- Alternative solution: create a directed graph of songs where an arrow $X \rightarrow Y$ means
"If we play song X, then we should also play song Y."
- For each band member we add a path of $S-1$ edges:

(Image is a little misleading; we have one vertex per song.)
- To find the minimum length set list:
- Pick one song X that we know has to be played. Any song ranked first by one of the band members suffices.
- Find the set of all songs reachable from X.
- This always gives the unique minimum length set list.
- Use BFS/DFS on a graph with S vertices and $M(S-1)$ edges. Time complexity: $\mathcal{O}(M S)$.

J: Target Practice

- Given a set of points, find out if two lines cover them.
- Ways to find at least one of the lines (if two covering lines exist):
- Of any five points, three must be collinear. This gives one of the lines.
- Of any three points, two must lie on one of the lines.
- By repeatedly randomly picking two points, you are almost guaranteed to get two points on the same line.
- Once you have a candidate for one of the lines, it is easy to check if all remaining points lie on a line.

K: Translators' Dinner

- Let languages be nodes and translators be edges.
- Given a connected graph, give a matching of the edges, or report that no such matching exists.
- Theorem: a matching exists if and only if the number of edges is even.
- A proof of this theorem often leads to an algorithm, or vice versa!

K: Translators' Dinner

- One solution uses an almost spanning tree, or AST.
- An AST on a graph G is a subtree of G which contains all vertices, except possibly some vertices of degree 1 , which connect directly to the tree.
- Any spanning tree is also an AST.
- Any graph with an AST is connected.

K: Translators' Dinner

- Construct an AST T on the graph (by making a spanning tree).
- For a leaf $I \in T$, if there are at least two edges incident to I which are not in T; match them and remove them from the graph.
- Repeat until there are zero or one such edges left.
- One: match that edge with the edge that connects the leaf to the tree and remove both of them from the graph.
- Zero: remove the leaf from T (but not the graph).
- Repeat with a new leaf until T (and thus the graph) is empty.
- Because T is always an AST, this works.

