
Solutions

BAPC Preliminaries 2016

Delft University of Technology

September 24, 2016

Solutions — BAPC Preliminaries 2016 — September 24, 2016 1 / 18



A: Block Game
Given stacks of height a ≥ b, determine: can you win the
game? There are three cases to consider.

1 If b | a, you win by clearing the pile.
2 If b < a < 2b, you have only one possible move, to (b, a − b).
3 If a > 2b, then you also always win. The position (b, a%b)

must be winning or losing.
Losing: moving to (b, a%b) is a winning move.
Winning: moving to (a%b + b, b) is a winning move, because
your opponent must move to (b, a%b).

So simulate the game as long as you are in case 2.

Solutions — BAPC Preliminaries 2016 — September 24, 2016 2 / 18



B: Chess Tournament

Is the set of reported chess matches inconsistent?
In a graph:

Players for nodes;
Undirected edges for ties;
Directed edges for victories.

Is there a cycle with at least one directed edge?
Standard cycle detection algorithms only work on directed or
undirected graphs, not mixed.
Large input, so efficient solution is necessary!

Solutions — BAPC Preliminaries 2016 — September 24, 2016 3 / 18



B: Chess Tournament

If two players are connected by a sequence of ties, they are of
the same level.
Collect all players into groups, based on who they tied with.
Make a new graph with groups as nodes, and an edge from
group A to group B if a player from A beat a player from B.
Use flood fill algorithm. Complexity O(E ).
Look for cycles in this new graph. (Don’t forget self-loops!)
Use a standard topological sort. Complexity: O(E ).

Solutions — BAPC Preliminaries 2016 — September 24, 2016 4 / 18



C: Completing the Square
This was the easy problem.
We are given an isosceles right triangle.
It is not so hard to determine the location of the missing
fourth corner once we know where the right angle is:

~p

~0

~q

~p + ~q

~u

~v

~w

~u + ~w − ~v

How to find the right angle? Two options:
Look at the pairwise distances.
Look at the angles. (Two vectors p and q make a right angle
at the origin if and only if the inner product p · q is zero.)

Solutions — BAPC Preliminaries 2016 — September 24, 2016 5 / 18



D: Hamming Ellipses (1)
Task: Count the number of length-n strings over q symbols
where hammingdist(p, f1) + hammingdist(p, f2) = D.

f1 = 0 1 2 0 1 , f2 = 2 1 2 1 0 , p = 1 0 0 0 2
In positions where f1 matches f2, the symbol in p may

(k1) match f1 and f2, or
(k2) differ from both f1 and f2 in (q − 1) ways.

In positions where f1 differs from f2, the symbol in p may
(k3) differ from both f1 and f2 in (q − 2) ways, or
(k4) differ from either f1 or f2 in 2 ways.

Calculate w = hammingdist(f1, f2)
For all k2, k3, k4 such that k2 ≤ n − w and k3 + k4 = w and
2k2 + 2k3 + k4 = D, count the number of points on the ellipse:

(q − 1)k2 (q − 2)k3 2k4

(
n − w

k2

)(
w
k3

)
Must be very careful to avoid overflow of int64 t

Solutions — BAPC Preliminaries 2016 — September 24, 2016 6 / 18



D: Hamming Ellipses (2)

Task: Count the number of length-n strings over q symbols
where hammingdist(p, f1) + hammingdist(p, f2) = D.
Alternative solution: dynamic programming over D and n.
Construct a table npoint[k, d ] = number of points at distance
d , considering only the first k symbols of the strings.
If f1 and f2 match at position k:
npoint[k, d ] = npoint[k − 1, d ] + (q − 1) npoin[k − 1, d − 2]
If f1 and f2 differ at position k:
npoint[k, d ] = (q−2) npoint[k−1, d−2]+2 npoint[k−1, d−1]
Final answer is npoint[n, D]
Easier and safe against overflow.

Solutions — BAPC Preliminaries 2016 — September 24, 2016 7 / 18



E: Lost in the Woods

What is the expected amount of time until your friend finds
the exit?
We can simulate the situation. Instead of simulating a single
instance, we “simulate them all at once” as a Markov chain.
Begin by putting probability weight 1 on the starting node,
and 0 on all other nodes.
At each step, redistribute the probability at each node to the
nodes around it.
Remove the weight at the exit of the woods, and update the
expected time. Then repeat.
Stop once the probability weight left in the woods is small
enough.

Solutions — BAPC Preliminaries 2016 — September 24, 2016 8 / 18



E: Lost in the Woods

Put weight 1 on starting node, 0 elsewhere.
At each step: redistribute, update expected time.

0

0
0

1

e

1
2

1
2

0
0

e

0

0

1
4

1
2

e

3
8

1
4

0
0

e

0

0

3
16

5
16

e

E = 0 E = 0 E = 2
4 E = 7

8 E = 11
8

Solutions — BAPC Preliminaries 2016 — September 24, 2016 9 / 18



F: Memory Match
Simulate the previous actions in the game and build a partial
list of known card pictures.
Mark pairs that are already matched.
Build a Map from picture name to card position.
Each card is now in one of four states:

(a) Already matched.
(b) Picture known, location of matching card known.
(c) Picture known, location of matching card unknown.
(d) Picture unknown.

Every two cards of type (b) can be matched.
If there is an equal number of cards of types (c) and (d),
every unknown card can be matched with a known card.
Otherwise, if there are exactly two cards of type (d), they can
be matched together.

Solutions — BAPC Preliminaries 2016 — September 24, 2016 10 / 18



G: Millionaire Madness

Given a rectangular grid of heights, find the least k ≥ 0 such
that there is a path from one corner to another using a ladder
at most k.
There can be up to 106 points in the grid – an efficient
algorithm is necessary!
Use a variant of Dijkstra’s algorithm with the priority queue
sorting on required ladder length (shortest first).
Alternatively, use binary search and repeated flood fills (BFS)
to find the least k for which you can traverse the grid.

Solutions — BAPC Preliminaries 2016 — September 24, 2016 11 / 18



H: Presidential Elections
The problem is a variation on the classical 0–1 knapsack
problem, which can be solved using dynamic programming.
For each state i let Ai denote the number of additional votes
required to win this state:

Ai = max
(⌊Ci + Fi + Ui

2

⌋
+ 1︸ ︷︷ ︸

the absolute majority

−Ci , 0
)

.

If we have Ai > Ui , then there is no way to win this state.
Take as knapsack items all states satisfying Ai ≤ Ui . All other
states are discarded. The i-th state has price Ai and value Di .
Find cheapest way to fill strictly more than half of your
knapsack with these items (standard 0–1 knapsack algorithm).
Time complexity: O(S · Dtot), where Dtot denotes the total
number of delegates, all states combined.

Solutions — BAPC Preliminaries 2016 — September 24, 2016 12 / 18



I: Rock Band
Need to draw a vertical line such that each song only occurs
on one side of the line:

4 5 2 1 6 8 3 7
5 2 4 8 6 1 3 7
2 5 4 8 1 6 3 7

Find leftmost such line.
Can be solved greedily in O(MS) time. For instance:

Precompute for each song its worst ranking.
Start with a vertical line after the first column.
Process all columns lying left of the line. If we encounter a
song here whose worst ranking is right of the line, move the
line further to the right, just beyond this worst ranking.
Stop once we have a stable set (all columns left of the line
have been processed).

Other similar greedy solutions will also work.

Solutions — BAPC Preliminaries 2016 — September 24, 2016 13 / 18



I: Rock Band
Alternative solution: create a directed graph of songs where
an arrow X → Y means

“If we play song X , then we should also play song Y .”
For each band member we add a path of S − 1 edges:

4 5 2 1 6 8 3 7
5 2 4 8 6 1 3 7
2 5 4 8 1 6 3 7

(Image is a little misleading; we have one vertex per song.)
To find the minimum length set list:

Pick one song X that we know has to be played. Any song
ranked first by one of the band members suffices.
Find the set of all songs reachable from X .
This always gives the unique minimum length set list.

Use BFS/DFS on a graph with S vertices and M(S− 1) edges.
Time complexity: O(MS).

Solutions — BAPC Preliminaries 2016 — September 24, 2016 14 / 18



J: Target Practice

Given a set of points, find out if two lines cover them.
Ways to find at least one of the lines (if two covering lines
exist):

Of any five points, three must be collinear. This gives one of
the lines.
Of any three points, two must lie on one of the lines.
By repeatedly randomly picking two points, you are almost
guaranteed to get two points on the same line.

Once you have a candidate for one of the lines, it is easy to
check if all remaining points lie on a line.

Solutions — BAPC Preliminaries 2016 — September 24, 2016 15 / 18



K: Translators’ Dinner

Let languages be nodes and translators be edges.
Given a connected graph, give a matching of the edges, or
report that no such matching exists.
Theorem: a matching exists if and only if the number of edges
is even.
A proof of this theorem often leads to an algorithm, or vice
versa!

Solutions — BAPC Preliminaries 2016 — September 24, 2016 16 / 18



K: Translators’ Dinner

One solution uses an almost spanning tree, or AST.
An AST on a graph G is a subtree of G which contains all
vertices, except possibly some vertices of degree 1, which
connect directly to the tree.
Any spanning tree is also an AST.
Any graph with an AST is connected.

Solutions — BAPC Preliminaries 2016 — September 24, 2016 17 / 18



K: Translators’ Dinner

Construct an AST T on the graph (by making a spanning
tree).
For a leaf l ∈ T , if there are at least two edges incident to l
which are not in T ; match them and remove them from the
graph.
Repeat until there are zero or one such edges left.

One: match that edge with the edge that connects the leaf to
the tree and remove both of them from the graph.
Zero: remove the leaf from T (but not the graph).

Repeat with a new leaf until T (and thus the graph) is empty.
Because T is always an AST, this works.

Solutions — BAPC Preliminaries 2016 — September 24, 2016 18 / 18


