BAPC 2014 Solutions

Growling Gears

```
Jury Jeopardy
```

Button Bashing
Dropping
Directions
Interesting
Integers
Floating
Formation
Excellent
Engineers
Avoiding the
Apocalypse
Citadel
Construction
Key to Knowledge
Highway Hassle

G - Growling Gears

Growling Gears

Button Bashing
Dropping Directions

Interesting
Integers
Floating Formation

Excellent
Engineers
Avoiding the
Apocalypse
Citadel
Construction
Key to Knowledge
Highway Hassle

Solution

- The maximum of $T(R)=-a R^{2}+b R+c$ is at $R=\frac{b}{2 a}$.
- The corresponding torque is $T=\frac{b^{2}}{4 a}+c$.
- Find the gear for which this is maximal.

J - Jury Jeopardy

Growling Gears

Solution

- Start with a maze consisting of walls only.

■ Track the robot's movements, add empty spaces wherever it goes.

- Find the limits of the maze and print it.
- Don't forget to print the number of test cases.

■ Diff your output with example.out!

B - Button Bashing

Solution

- Construct a graph with a node for every amount of time.
- For each node, add edges corresponding to every button.

■ Do a breadth-first search to find the shortest path to every node.

D - Dropping Directions

Growling Gears

Solution

- The road network consists entirely of loops.
- For every loop that doesn't contain the goal, at least one signpost is needed to get people off of it.
■ For every loop that doesn't contain the goal, one signpost is sufficient.
- The answer is the number of loops that do not contain the goal.

I - Interesting Integers (1/3)

Growling Gears

Jury Jeopardy
Button Bashing
Dropping Directions

Interesting Integers

Floating
Formation
Excellent
Engineers
Avoiding the
Apocalypse
Citadel
Construction
Solution

$$
\begin{aligned}
& G_{1}=a \\
& G_{2}=b \\
& G_{3}=a+b \\
& G_{4}=a+2 b \\
& G_{5}=2 a+3 b \\
& G_{k}=a F_{k-2}+b F_{k-1}
\end{aligned}
$$

I - Interesting Integers (2/3)

Growling Gears

Problem description

Solve $n=a F_{k-2}+b F_{k-1}$

Method 1

- Try all b in increasing order.
- For each b, try all sufficiently small k, solve for a.
- b is at most $O(\sqrt{n})$.
- Complexity: $O(\sqrt{n} \log n)$

I - Interesting Integers (3/3)

Growling Gears

Problem description

Solve $n=a F_{k-2}+b F_{k-1}$

Method 2
$n=a F_{k-2}+b F_{k-1}=(b-a) F_{k-1}+a F_{k}=$ $c F_{k-1}+a F_{k} \quad(c \geq 0)$
Try all k in decreasing order $n=c F_{k-1}\left(\bmod F_{k}\right) \Rightarrow c=n F_{k-1}^{-1}\left(\bmod F_{k}\right)=n F_{k-1-k \% 2}$
$\left(\bmod F_{k}\right)$
Minimize $c: c=n F_{k-1-k \% 2} \% F_{k}$
If $c F_{k-1}<n$ then:
$a=\frac{n-c F_{k-1}}{F_{k}} \quad b=a+c$

F - Floating Formation

High-level problem
■ First divide graph into 2-core and attached trees

- Then 'pin' leaves of trees, extending 2-core

■ Find attached trees through repeated peeling $(O(n))$

- Find longest path down for every node $(O(n))$
- Discount paths already on a path from a parent $(O(n))$
- Take K longest paths $(O(n \log n)$, can do $O(n))$

Can do several steps at the same time

E - Excellent Engineers (1/2)

Growling Gears

Jury Jeopardy
Button Bashing
Dropping
Directions
Interesting
Integers
Floating
Formation
Excellent
Engineers
Avoiding the
Apocalypse
Citadel
Construction
Key to Knowledge
Highway Hassle

Problem description
Compute the 3-dimensional Pareto front.
Trivial $O\left(n^{2}\right)$ algorithm: TIMELIMIT.
$O(n \log n)$ time Solution

- Sort the engineers by skill 3, process them from good to bad.
- Maintain the 2-dimensional Pareto front of the engineers processed so far, i.e. the set of engineers for whom there has not been an engineer so far that is better in both skill 1 and 2.

E - Excellent Engineers (2/2)

Growling Gears

Jury Jeopardy
Button Bashing
Dropping
Directions
Interesting
Integers
Floating
Formation
Excellent
Engineers
Avoiding the
Apocalypse
Citadel
Construction
Key to Knowledge
Highway Hassle
$O(n \log n)$ time Solution

- e is better in both skill \#1 and skill \#2

E - Excellent Engineers (2/2)

Growling Gears

Jury Jeopardy
Button Bashing
Dropping
Directions
Interesting
Integers
Floating
Formation
Excellent
Engineers
Avoiding the
Apocalypse
Citadel
Construction
Key to Knowledge
Highway Hassle
$O(n \log n)$ time Solution

rank by skill \# 1

E - Excellent Engineers (2/2)

Growling Gears

Jury Jeopardy
Button Bashing
Dropping
Directions
Interesting
Integers
Floating
Formation
Excellent
Engineers
Avoiding the
Apocalypse
Citadel
Construction
Key to Knowledge
Highway Hassle
$O(n \log n)$ time Solution

A - Avoiding the Apocalypse (1/2)

Growling Gears

Solution

- Make a graph with nodes for every combination of location and timestep, a source and a sink.
■ Add edges representing traversing a road at a certain timestep, with the corresponding capacity.
- Add edges representing waiting at a location for one timestep, with maximum capacity.

A - Avoiding the Apocalypse (2/2)

Solution

- Add edges from each medical facility to the sink, with maximum capacity.
■ Add an edge from the source to the start location at time zero, with capacity g.
- Determine the maximum flow from the source to the sink.
- Complexity: $O(\#$ edges $\times \mid$ flow $\mid)=O($ rsp $)$

Problem description

Find the largest quadrangle.

Solution

■ Find the convex hull.

- \forall pairs of points (A, C) on the Convex Hull, find the two points that are furthest away from the line $A C$.
- The hull is convex, so this can be done in $O(\log n)$ time using ternary search.
- Complexity: $O\left(n^{2} \log n\right)$ (but $O\left(n^{2}\right)$ and even $O(n \log n)$ are possible).

K - Key to Knowledge (1/2)

Growling Gears

Jury Jeopardy
Button Bashing
Dropping Directions

Interesting Integers

Floating
Formation
Excellent
Engineers
Avoiding the
Apocalypse
Citadel
Construction
Key to Knowledge
Highway Hassle

Too slow

- Try all answers: $O\left(2^{m}\right)$
- With pruning: $O\left(\binom{m}{m / 2}\right)$

K - Key to Knowledge (2/2)

Solution

- Split the questions into two (roughly) equal sets.
- For each set, try all answers and compute the number of correct answers for each student.
- Find pairs of answers that give the required total scores using the 2-sum algorithm:
- Sort the answers in each set based on the student scores.
- Go through one list from top to bottom and the other from bottom to top simultaneously.
- Complexity: $O\left(m^{2} 2^{m / 2}\right)$

H - Highway Hassle (1/2)

Growling Gears

Jury Jeopardy
Button Bashing
Dropping
Directions
Interesting
Integers
Floating
Formation
Excellent
Engineers
Avoiding the
Apocalypse
Citadel
Construction
Key to Knowledge
Highway Hassle

Problem description

Find cheapest route + fuelling plan from start to destination.
May require ≥ 3 stops at the same petrol station

H - Highway Hassle (2/2)

Growling Gears

Jury Jeopardy
Button Bashing
Dropping
Directions
Interesting
Integers
Floating
Formation
Excellent
Engineers
Avoiding the
Apocalypse
Citadel

Construction

Key to Knowledge
Highway Hassle

1 compute all distances between petrol stations (destination $=$ free petrol station) in $O(s m \log n)$ time optimal: from expensive to cheap, take just enough petrol; from cheap to expensive, take full tank.
\rightarrow for each link you know tank contents at arrival/deparature.
2 search least-cost path in graph with node for each possible combination (station, amount of petrol at arrival/departure)

