
BAPC 2014
The 2014 Benelux Algorithm Programming Contest

The Problem Set

A Avoiding the Apocalypse
B Button Bashing
C Citadel Construction
D Dropping Directions
E Excellent Engineers
F Floating Formation
G Growling Gears
H Highway Hassle
I Interesting Integers
J Jury Jeopardy
K Key to Knowledge

Problem A: Avoiding the Apocalypse 1

A Avoiding the Apocalypse

You and the rest of your team are stuck in a town during the zombie apocalypse of 2020. You
all might be infected with the virus and hence you will have to find your way to one of the
medical facilities to get a cure before you also become zombies. Because you are scientists you
quickly realize that it is safer to try and sneak your way past the zombies than to recklessly
start fighting them. Obviously the zombies are everywhere so some streets might take more
time to sneak through than others. It is also obvious that by splitting up into smaller groups
it is easier to move around undetected.

Furthermore, since these zombies have not mutated to the extent that they actually have
eyes in the back of their heads, it might be easy to cross some streets in one direction while
hard or impossible to cross them in the other direction.

How many of you can sneak past all the zombies and get to a medical facility in time?

source: xkcd.com/734

Input

On the first line one positive number: the number of test cases, at most 100. After that per test
case:

• one line with a single integer n (1 ≤ n ≤ 1 000): the number of locations in the town.

• one line with three space-separated integers i, g and s (1 ≤ i ≤ n and 1 ≤ g ≤ 100 and
1 ≤ s ≤ 100): the starting location of your group, the number of people in it, and the
number of time steps you have to get to the safety of a medical facility, respectively.

• one line with a single integer m (1 ≤ m ≤ n): the number of medical facilities in the
town.

• m lines, each with a single integer x (1 ≤ x ≤ n): the location of each of the medical
facilities.

• one line with a single integer r (0 ≤ r ≤ 1 000): the number of roads in the town.

• r lines, each with four space-separated integers a, b, p and t (1 ≤ a, b ≤ n and a 6= b and
1 ≤ p ≤ 100 and 1 ≤ t ≤ 100), indicating that there is a road from a to b, which p people
can enter at every time step and takes t timesteps to traverse.

2 Problem A: Avoiding the Apocalypse

There are at most two roads – one in each direction – between any pair of locations. The
locations are safe enough to wait at for any amount of time and do not have a limit on the
number of people that can be there.

Output

Per test case:

• one line with a single integer: the largest number of people that can get to a medical
facility in time.

Sample in- and output

Input Output

2
4
3 8 5
2
2
4
5
1 2 1 3
3 2 1 4
3 1 2 1
1 4 1 3
3 4 1 3
4
3 10 5
2
2
4
5
1 2 1 3
3 2 1 4
3 1 2 1
1 4 1 3
3 4 1 3

8
9

Problem B: Button Bashing 3

B Button Bashing

source: xkcd.com/1103

You recently acquired a new microwave, and noticed that it
provides a large number of buttons to be able to quickly spec-
ify the time that the microwave should be running for. There
are buttons both for adding time, and for subtracting time. You
wonder how efficient you can be when entering cooking times:
you want to minimize the number of required button presses.

The microwave can be running for at least 0 seconds, and at
most 1 hour. If a button press would result in a cooking time
of less than 0 seconds, the microwave will set the cooking time
to 0 seconds. If a button press would result in a cooking time
of more than 1 hour, the microwave will set the cooking time to
1 hour. Initially, the microwave will run for 0 seconds. There
will always be a button adding at least 1 second to the cooking
time.

Given the buttons that the microwave provides for entering
cooking times, determine the least amount of button presses re-
quired to let the microwave run for a certain amount of time. If
it is not possible to enter the desired cooking time precisely, de-
termine the smallest achievable cooking time above the target,
and the minimum number of button presses required for that
cooking time, instead. The microwave does not allow to adjust
the cooking time once it has started cooking.

Input

On the first line one positive number: the number of test cases, at most 100. After that per test
case:

• one line with two space-separated integers n and t (1 ≤ n ≤ 16 and 0 ≤ t ≤ 3 600): the
number of buttons available to change the cooking time, and the desired cooking time
in seconds, respectively.

• one line with n space-separated integers bi (−3 600 ≤ bi ≤ 3 600): the number of seconds
added to the cooking time when button i is pressed.

Output

Per test case:

• one line with two space-separated integers: the minimum number of button presses
required to reach the required cooking time, and the minimum number of extra seconds
that the microwave must be running for, respectively.

4 Problem B: Button Bashing

Sample in- and output

Input Output

2
3 50
-10 10 60
1 50
20

2 0
3 10

Problem C: Citadel Construction 5

C Citadel Construction

The army wants to put up a new base in dangerous territory. The base will be surrounded by
a citadel consisting of a number of straight walls. At every corner where two walls meet, there
will be a watchtower. In order to enable efficient coordination in case of attack, the number
of watchtowers should not exceed four.

source: xkcd.com/1190 (414)

After a detailed survey of the area, the
army has concluded that not all locations
are equally suitable for a watchtower: the
ground needs to be firm enough to support
the weight of the tower, and there should be
enough visibility. They have selected a num-
ber of locations that meet the requirements.

Within these constraints, the army would
like to build a base that is as large as possi-
ble. For this, they have come to you for help.
Since the results of the survey are of course
classified, you will not be given the possible locations directly; rather, you should write a pro-
gram that can take them as input. Furthermore, they want the program to be able to handle
multiple test cases in one go, so that they can hide the real data among lots of fake data.

For the computation of the area, you may assume that the watchtowers are infinitesimal
in size and the walls infinitesimal in width.

Input

On the first line one positive number: the number of test cases, at most 100. After that per test
case:

• one line with a single integer n (3 ≤ n ≤ 1 000): the number of locations that are suitable
for a watchtower.

• n lines, each with two space-separated integers x and y (−10 000 ≤ x, y ≤ 10 000): the
coordinates of each location.

All locations are distinct.

Output

Per test case:

• one line with a single number: the largest possible area that the base can have. This
number will be either an integer or a half-integer. If it is an integer, print that integer;
if it is a half-integer, print the integer part followed by “.5”. Trailing zeros are not
allowed.

6 Problem C: Citadel Construction

Sample in- and output

Input Output

3
6
0 0
3 7
10 0
11 6
0 10
10 10
5
0 0
-2 -2
3 -2
0 1
0 3
10
3 1
4 1
5 9
2 6
5 3
5 8
9 7
9 3
2 3
8 4

100
12.5
31

Problem D: Dropping Directions 7

D Dropping Directions

Your sports club has a rivaling sports club in the same city. They did some awful things to
you and you want to get back at them. You have learned that they are planning on doing a
’drop’: they drive people blindfolded to a city none of the participants know and tell them to
find a specific place, the goal. They then have fun randomly walking through the city trying
to find the goal.

You intend to spoil their fun thoroughly: you know that they promise a prize for whoever
reaches the goal first, so the participants will use all available means to get to the goal. Indeed,
you are fairly sure that if you set up official-looking signposts in that city in advance, they will
probably follow them. You therefore decide to place signposts throughout the city so that no
matter where the participants get dropped, they can follow the signposts to the goal; this
takes out the element of ’randomly walking around’ and therefore all the fun.

However, official-looking signposts are not cheap and attract a lot of attention, particularly
from police officers. So you wish to minimize the number of signposts you have to place in
the city. This may lead the participants to use a very slow detour, but they don’t know the
city anyway, so they won’t find out.

weird
Bridges

1

4

5

3

2

City of 2nd and 3rd sample input. The 2nd input has the goal at intersection 5 and the 3rd at 4.

You get yourself a map of the city and start planning. You notice one nice aspect of the
city: all intersections are cross-shaped, so it is easy to predict where participants will go to:
they will just go to the opposite side of the intersection they arrive at. If a participant gets
dropped at an intersection with a signpost, he or she will follow that sign; otherwise they
go in an arbitrary direction until they hit a sign post. You know that participants never get
dropped at the goal (that would be silly).

Input

On the first line one positive number: the number of test cases, at most 100. After that per test
case:

8 Problem D: Dropping Directions

• one line with two space-separated integers n and g (5 ≤ n ≤ 100 000 and 1 ≤ g ≤ n):
the number of intersections and the goal, respectively.

• n lines, each with four space-separated integers a, b, c and d (1 ≤ a, b, c, d ≤ n). The
i-th line gives the intersections you end up at if you follow one of the roads adjacent
to the i-th intersection; more precisely, participants who approach the i-th intersection
coming from intersection a will continue towards intersection c and vice versa, while
participants coming from intersection b will continue towards intersection d and vice
versa.

Each intersection connects to four different other intersections.

Output

Per test case:

• one line with a single integer: the smallest number of signposts needed to ruin the fun.

Sample in- and output

Input Output

4
5 5
2 3 4 5
3 4 5 1
4 5 1 2
5 1 2 3
1 2 3 4
5 5
5 3 2 4
4 5 3 1
1 5 2 4
1 3 5 2
1 3 2 4
5 4
5 3 2 4
4 5 3 1
1 5 2 4
1 3 5 2
1 3 2 4
5 5
5 3 2 4
4 5 3 1
1 5 2 4
1 5 2 3
1 3 2 4

0
0
1
1

Problem E: Excellent Engineers 9

E Excellent Engineers

You are working for an agency that selects the best software engineers from Belgium, the
Netherlands and Luxembourg for employment at various international companies. Given
the very large number of excellent software engineers these countries have to offer, the agency
has charged you to develop a tool that quickly selects the best candidates available from the
agency’s files.

Before a software engineer is included in the agency’s files, he has to undergo extensive
testing. Based on these tests, all software engineers are ranked on three essential skills: com-
munication skills, programming skills, and algorithmic knowledge. The software engineer
with rank one in the category algorithmic knowledge is the best algorithmic expert in the
files, with rank two the second best, etcetera.

For potential customers, your tool needs to process the agency’s files and produce a short-
list of the potentially most interesting candidates. A software engineer is a potential candidate
that is to be put on this shortlist if there is no other software engineer in the files that scores
better on all three skills. That is, an engineer is to be put on the shortlist if there is no other
software engineer that has better communication skills, better programming skills, and more
algorithmic knowledge.

source: xkcd.com/125

Input

On the first line one positive number: the number of test cases, at most 100. After that per test
case:

• one line with a single integer n (1 ≤ n ≤ 100 000): the number of software engineers in
the agency’s files.

• n lines, each with three space-separated integers r1, r2 and r3 (1 ≤ r1, r2, r3 ≤ n): the
rank of each software engineer from the files with respect to his communication skills,
programming skills and algorithmic knowledge, respectively.

For each skill s and each rank x between 1 and n, there is exactly one engineer with rs = x.

10 Problem E: Excellent Engineers

Output

Per test case:

• one line with a single integer: the number of candidates on the shortlist.

Sample in- and output

Input Output

3
3
2 3 2
3 2 3
1 1 1
3
1 2 3
2 3 1
3 1 2
10
1 7 10
3 9 7
2 2 9
5 10 8
4 3 5
7 5 2
6 1 3
9 6 6
8 4 4
10 8 1

1
3
7

Problem F: Floating Formation 11

F Floating Formation

First sample input

Industrial design students have come up with an amazing idea:
they have made some awesome pieces of design and they want
to showcase them floating on the water of the IJsselmeer! Un-
fortunately, their designs do not stay afloat by themselves, so
they took a few boats and used them to tie designs together.

The left and right sides of a boat have rope connection
points that can be tied to designs. A boat can therefore be at-
tached to at most two designs. A design that is connected to
two or more boats will stay afloat indefinitely. Unfortunately,
designs that are connected to only one boat will not float prop-
erly: the part of the design furthest away from the boat will sink
a bit and be partially in the water, so it will soak, making the de-
sign heavier, which will eventually sink the design, making it
too heavy for the boat to keep afloat. A boat that is attached to
a design that has sunk will detach itself from the other design
it is attached to, if applicable, and will carry the soaked design
back to shore. Designs that are soaked are placed on the beach, but the students want the
ship that brought the design to shore to stay attached to the soaked design, as they feel this
composition has artistic value. The boat will therefore not go back to the designs that are
still floating, which means that if the boat was attached to another design, that design loses a
supporting boat and will also start to sink!

Keeping the above in mind, there are simple ways to string the designs together with boats
so that no design sinks, such as forming a circle. This is not the approach that the students
used: their approach involved much creativity. The result, although a single connected com-
ponent, is a configuration that leaves many designs connected by only one boat and hence in
danger of sinking. You also note that the students have always attached boats to two designs:
there are no boats that are attached to a single design. Also, boats can never be attached to a
single design twice, and there are no two boats that are attached to the same pair of designs.

Reluctantly, the students have admitted that they may have made mistakes, so they have
asked you to use the few boats they have left to keep as many designs afloat as possible. As
the current configuration has much artistic value, you are not allowed to change it. In fact,
you are only allowed to use the connection points on the left sides of the spare boats (you are
not allowed to use the right side), so that the geometric ordering of the boats is not changed.

Given this situation, how can you use the boats so that the number of designs that end
up sunk is minimized? Note that we want your program to be able to handle non-planar
configurations as well, in case the students ever turn to air balloons. For all testcases, you
may assume that at least one design would stay afloat, even if none of the spare boats are
used.

Input

On the first line one positive number: the number of test cases, at most 100. After that per test
case:

• one line with three space-separated integers n, m and k (1 ≤ n,m, k ≤ 10 000): the
number of designs, used boats and spare boats respectively.

12 Problem F: Floating Formation

• m lines, each with two space-separated integers a and b (1 ≤ a, b ≤ n and a 6= b): a boat
is attached to design a on its left side and design b on its right side.

Output

Per test case:

• one line with a single integer: the smallest number of designs that are eventually sunk
after employing the spare ships.

Sample in- and output

Input Output

2
6 6 1
1 2
2 3
1 3
1 4
4 5
1 6
11 11 3
1 2
2 3
1 3
1 4
4 5
2 6
3 7
7 8
7 9
8 10
9 11

1
1

Problem G: Growling Gears 13

G Growling Gears

The Best Acceleration Production Company specializes in multi-gear engines. The performance
of an engine in a certain gear, measured in the amount of torque produced, is not constant:
the amount of torque depends on the RPM of the engine. This relationship can be described
using a torque-RPM curve.

RPM

T
or
q
u
e

Gear 1
Gear 2

The torque-RPM curve of the gears given in the second sample input.
The second gear can produce the highest torque.

For the latest line of engines, the torque-RPM curve of all gears in the engine is a parabola
of the form T = −aR2 + bR + c, where R is the RPM of the engine, and T is the resulting
torque.

Given the parabolas describing all gears in an engine, determine the gear in which the
highest torque is produced. The first gear is gear 1, the second gear is gear 2, etc. There will
be only one gear that produces the highest torque: all test cases are such that the maximum
torque is at least 1 higher than the maximum torque in all the other gears.

Input

On the first line one positive number: the number of test cases, at most 100. After that per test
case:

• one line with a single integer n (1 ≤ n ≤ 10): the number of gears in the engine.

• n lines, each with three space-separated integers a, b and c (1 ≤ a, b, c ≤ 10 000): the
parameters of the parabola T = −aR2+bR+c describing the torque-RPM curve of each
engine.

Output

Per test case:

• one line with a single integer: the gear in which the maximum torque is generated.

14 Problem G: Growling Gears

Sample in- and output

Input Output

3
1
1 4 2
2
3 126 1400
2 152 208
2
3 127 1400
2 154 208

1
2
2

Problem H: Highway Hassle 15

H Highway Hassle

source: xkcd.com/951

A transport company has come to you for help. One of the
biggest expenses that they have is the petrol for the trucks.
They would like to minimize the money they need to spend
on petrol.

Because of the long trips, a truck driver typically needs
to stop multiple times at a petrol station to tank up. What
complicates matters is that the price of petrol is not the same
at every station. The differences could in fact be so significant
that it pays to take a detour in order to visit a station with a
low price. Yet another complication is that the price is not the
same every day (but it does not change during the day).

The good news is that they can find out, every morning,
what the price of petrol is at every station for that day. They
also have, for every destination, a simple graph representing
the relevant part of the road network, containing only the major intersections and petrol sta-
tions as nodes. Furthermore, they know for every road exactly how much petrol is needed to
go from one node to the other, down to the milliliter; it does not depend on the direction or
the amount of petrol in the tank. The truck drivers also have the ability to tank with milliliter
precision.

It is perfectly fine for a truck to run out of petrol at the exact moment it arrives at a petrol
station or at the destination; there is in fact a spare tank to allow for small fluctuations in
fuel consumption, but that petrol is not supposed to be used. You may therefore ignore its
existence.

A final thing to take into consideration is that the trucks have a fuel tank of limited size.
With all that information, can you work out what the optimal path to the destination is, along
with the optimal tanking strategy?

Input

On the first line one positive number: the number of test cases, at most 100. After that per test
case:

• one line with three space-separated integers n, m and s (2 ≤ n ≤ 1 000 and 1 ≤ m ≤
10 000 and 1 ≤ s ≤ 120): the number of nodes, edges and petrol stations, respectively.

• one line with a single integer t (1 ≤ t ≤ 100 000): the maximum amount of petrol that
the fuel tank can hold in milliliters.

• m lines, each with three space-separated integers a, b and f (1 ≤ a, b ≤ n and a 6= b and
1 ≤ f ≤ 100 000), indicating that there is a road between nodes a and b which takes f
milliliters of petrol (fuel) to traverse.

• s lines, each with two space-separated integers x and p (1 ≤ x ≤ n and 1 ≤ p ≤ 100):
the node x where each petrol station is located and the price p per milliliter of petrol at
that station, respectively.

• one line with two space-separated integers c and d (1 ≤ c, d ≤ n and c 6= d): the nodes
where the company and the destination are located, respectively.

16 Problem H: Highway Hassle

Every road is bidirectional. There is at most one road between any pair of nodes. There is
always a petrol station at node c (it is right next to the company). The truck starts with an
empty tank. The destination is guaranteed to be reachable.

Output

Per test case:

• one line with a single integer: the minimum amount of money that needs to be spent on
petrol.

Sample in- and output

Input Output

3
3 3 2
2000
1 3 800
1 2 500
2 3 500
1 70
2 40
1 3
5 5 3
1000
1 2 800
2 5 800
1 3 400
3 4 600
4 5 600
1 80
2 90
3 20
1 5
4 3 3
1000
1 2 200
2 3 600
3 4 300
1 40
2 70
3 90
2 4

55000
134000
61000

Problem I: Interesting Integers 17

I Interesting Integers

source: xkcd.com/587

Undoubtedly you know of the Fibonacci numbers. Starting with
F1 = 1 and F2 = 1, every next number is the sum of the two
previous ones. This results in the sequence 1, 1, 2, 3, 5, 8, 13,

Now let us consider more generally sequences that obey the
same recursion relation

Gi = Gi−1 +Gi−2 for i > 2

but start with two numbers G1 ≤ G2 of our own choice. We shall
call these Gabonacci sequences. For example, if one uses G1 = 1
and G2 = 3, one gets what are known as the Lucas numbers:
1, 3, 4, 7, 11, 18, 29, These numbers are – apart from 1 and 3 –
different from the Fibonacci numbers.

By choosing the first two numbers appropriately, you can get
any number you like to appear in the Gabonacci sequence. For
example, the number n appears in the sequence that starts with 1
and n− 1, but that is a bit lame. It would be more fun to start with numbers that are as small
as possible, would you not agree?

Input

On the first line one positive number: the number of test cases, at most 100. After that per test
case:

• one line with a single integer n (2 ≤ n ≤ 109): the number to appear in the sequence.

Output

Per test case:

• one line with two integers a and b (0 < a ≤ b), such that, for G1 = a and G2 = b,
Gk = n for some k. These numbers should be the smallest possible, i.e., there should be
no numbers a′ and b′ with the same property, for which b′ < b, or for which b′ = b and
a′ < a.

Sample in- and output

Input Output

5
89
123
1000
1573655
842831057

1 1
1 3
2 10
985 1971
2 7

Almost blank page

Problem J: Jury Jeopardy 19

J Jury Jeopardy

What would a programming contest be without a problem featuring an ASCII-maze? Do not
despair: one of the judges has designed such a problem.

source: xkcd.com/246

The problem is about a maze that has exactly one en-
trance/exit, contains no cycles and has no empty space
that is completely enclosed by walls. A robot is sent in
to explore the entire maze. The robot always faces the di-
rection it travels in. At every step, the robot will try to turn
right. If there is a wall there, it will attempt to go forward
instead. If that is not possible, it will try to turn left. If all
three directions are unavailable, it will turn back.

The challenge for the contestants is to write a program
that describes the path of the robot, starting from the en-
trance/exit square until it finally comes back to it. The
movements are described by a single letter: ‘F’ means for-
ward, ‘L’ is left, ‘R’ is right and ‘B’ stands for backward.
Each of ‘L’, ‘R’ and ‘B’ does not only describe the change in orientation of the robot, but also
the advancement of one square in that direction. The robot’s initial direction is East. In addi-
tion, the path of the robot always ends at the entrance/exit square.

The judge responsible for the problem had completed all the samples and testdata, when
disaster struck: the input file got deleted and there is no way to recover it! Fortunately the
output and the samples are still there. Can you reconstruct the input from the output? For
your convenience, he has manually added the number of test cases to both the sample output
and the testdata output.

Input

On the first line one positive number: the number of test cases. After that per test case:

• one line with a single string: the movements of the robot through the maze.

Output

On the first line one positive number: the number of test cases, at most 100. After that per test
case:

• one line with two space-separated integers h and w (3 ≤ h,w ≤ 100): the height and
width of the maze, respectively.

• h lines, each with w characters, describing the maze: a ‘#’ indicates a wall and a ‘.’
represents an empty square.

The entire contour of the maze consists of walls, with the exception of one square on the left:
this is the entrance. The maze contains no cycles (i.e. paths that would lead the robot back to
a square it had left in another direction) and no empty squares that cannot be reached from
the entrance. Every row or column – with the exception of the top row, bottom row and right
column – contains at least one empty square.

20 Problem J: Jury Jeopardy

Sample in- and output

Input Output

3
FFRBLF
FFRFRBRFBFRBRFLF
FRLFFFLBRFFFRFFFRFRFBRFLBRFRLFLFFR

3
4 4
####
...#
##.#
####
7 5
#####
...##
##.##
#...#
##.##
##.##
#####
7 7
#######
#...#.#
#.#...#
#.#.###
..###.#
#.....#
#######

Problem K: Key to Knowledge 21

K Key to Knowledge

source: xkcd.com/1289

A while ago a class of students took an exam. It consisted
of true-or-false questions only, but the questions were re-
ally tough! Even afterward, with the help of the book, lec-
ture notes and each other, the students are not sure what all
the correct answers were. They could ask the professor of
course, but he is not the kind of guy you would dare to dis-
turb with questions that betray your ignorance. Anyway,
the students at least have an idea of how they performed.

The professor has just returned the exams, but the re-
sults are not quite as expected. Unfortunately, he did
not indicate on their exams which answers were right or
wrong, he has simply put the number of correct answers
at the top. So what were the correct answers according to
the professor then? Given how far off some of the grades
are from expected, there is a suspicion among some of the
students that the professor did not count the correct an-
swers properly.

Given, for each student, the answers he/she gave and the number of correct answers, can
you work out what set of correct answers matches the results?

Input

On the first line one positive number: the number of test cases, at most 100. After that per test
case:

• one line with two space-separated integers n and m (1 ≤ n ≤ 12 and 1 ≤ m ≤ 30): the
number of students and the number of questions in the exam, respectively.

• n lines, each with m digits, each digit either 0 or 1: the answers given by each student,
with 0 representing “false” and 1 representing “true”. This is followed by a space and
a single integer c (0 ≤ c ≤ m): the number of correct answers for that student.

Output

Per test case:

• one line with m digits, each one either 0 or 1: the unique set of correct answers that
could account for all the results. If there is not exactly one such set, the line should read
“# solutions” instead, with the number of solutions in place of ‘#’.

22 Problem K: Key to Knowledge

Sample in- and output

Input Output

3
3 5
01101 4
10100 3
00011 3
3 5
01101 0
10100 3
00011 2
4 4
0000 2
1010 2
0101 2
1111 2

00101
0 solutions
4 solutions

	A Avoiding the Apocalypse
	B Button Bashing
	C Citadel Construction
	D Dropping Directions
	E Excellent Engineers
	F Floating Formation
	G Growling Gears
	H Highway Hassle
	I Interesting Integers
	J Jury Jeopardy
	K Key to Knowledge

