
Northwestern European
Regional Contest 2016

NWERC 2016

Bath, November 20

Problems
A Arranging Hat
B British Menu
C Careful Ascent
D Driving in Optimistan
E Exam Redistribution
F Free Weights
G Gotta Nudge ’Em All
H Hamiltonian Hypercube
I Iron and Coal
J Jupiter Orbiter
K Kiwi Trees

Do not open before the contest has started.

This page is intentionally left (almost) blank.

NWERC 2016
Problem A

Arranging Hat

The Arranging Hat. Image by Lisa Abose

Arranging Hat is a cushy job indeed; high impact work, abso-
lute authority, and 364 days of holiday every year. However,
the hat has decided that it can do even better—it would like
very much to become a tenured professor.

Recently the hat has been reading computer science papers
in its ample spare time, and of course, being an arranging
hat, it is particularly interested in learning more about sorting
algorithms.

The hat’s new contribution is to a class of algorithms known
as lossy sorting algorithms. These usually work by removing
some of the input elements in order to make it easier to sort the
input (e.g., the Dropsort algorithm), instead of sorting all the
input.

The hat is going to go one better—it is going to invent a lossy sorting algorithm for numbers
that does not remove any input numbers and even keeps them in their original place, but instead
changes some of the digits in the numbers to make the list sorted.

The lossiness of the sorting operation depends on how many digits are changed. What is the
smallest number of digits that need to be changed in one such list of numbers, to ensure that it is
sorted?

Input

The input consists of:
• one line containing the integers n and m (1 ≤ n ≤ 40, 1 ≤ m ≤ 400), the number of

numbers and the number of digits in each number, respectively.
• n lines each containing an integer v (0 ≤ v < 10m). The numbers are zero-padded to

exactly m digits.

Output

Write a sorted version of the array, after making a minimum number of digit changes to make
the numbers sorted (the numbers must remain zero-padded to m digits). If there are multiple
optimal solutions, you may give any of them.

Sample Input 1 Sample Output 1

5 3
111
001
000
111
000

001
001
001
111
200

NWERC 2016 Problem A: Arranging Hat 1

NWERC 2016
Sample Input 2 Sample Output 2

15 3
999
888
777
666
555
444
333
222
111
222
333
444
555
666
999

199
288
377
466
555
644
733
822
911
922
933
944
955
966
999

NWERC 2016 Problem A: Arranging Hat 2

NWERC 2016
Problem B
British Menu

Hevva Cake by Caitlin on Flickr, cc by

Since you are in Britain, you definitely want to try British food. Unfor-
tunately you will only have a single free evening, so you decided to try
all the food you can get in one run. You plan a gigantic meal where you
eat one British dish after the other. Clearly not every order of dishes
is appropriate. For example, it is not acceptable to eat Blood Pudding
directly after Cornish Hevva Cake, but it would be perfectly fine if you
chose to eat Baked Beans in between.

You have compiled a comprehensive list of British dishes. For each dish
you have also decided which other dishes are fit to be eaten directly
afterwards. A menu is a sequence of dishes such that each dish (except
the first) is fit to be eaten directly after the previous dish.

After some time studying the list of dishes, you noticed something odd: Whenever it is pos-
sible to find a menu in which a dish occurs twice (for example dishes A, then B, then C,
then dish A again), there can be at most four different types of dishes between the dish that
occurred twice – excluding that dish itself. For example, it is impossible to find a menu like
A,B,C,D,E, F,A, but it may be possible to find menus like A,B,C,B,C,B,C,B,C,B,A
or A,B,C,D,E,A,B,C,D,E,A.

But who wants to eat the same dish twice anyway? Clearly, you want to know how many dishes
there can be in a menu without repeating any dish!

Input

The input consists of:
• One line with two integers n,m (1 ≤ n ≤ 105, 1 ≤ m ≤ 106), the number of dishes and

compatibilities.
• m lines, each containing two integers a and b (1 ≤ a, b ≤ n), indicating that you can eat

dish b immediately after dish a.
Dishes are numbered from 1 to n in no particular order, and the compatibilities satisfy the
constraint described above.

Output

A single integer indicating the maximum number of courses in a menu without repeated dishes.

Sample Input 1 Sample Output 1

4 3
1 2
2 3
2 4

3

NWERC 2016 Problem B: British Menu 3

https://www.flickr.com/photos/50194168@N00/85984735

NWERC 2016
Sample Input 2 Sample Output 2

7 7
1 2
2 3
3 4
4 5
5 2
4 6
5 7

6

NWERC 2016 Problem B: British Menu 4

NWERC 2016
Problem C

Careful Ascent
That went well! As police sirens rang out around the palace, Mal Reynolds had already reached
his lifting device outside of the city.

No spaceship can escape Planet Zarzos without permission from the High Priest. However, Mal’s
spaceship, Firefly, is in geostationary orbit well above the controlled zone and his small lifting
device can avoid being recognised as an intruder if its vertical velocity is exactly 1 km/min.

There are still two problems. First, Mal will not be able to control the vehicle from his space
suit, so he must set up the autopilot while on the ground. The vertical velocity must be exactly 1
km/min and the horizontal velocity must be set in such a way that Mal will hit the Firefly on the
resulting trajectory. Second, the energy shields of the planet disturb the autopilot: They will
decrease or increase the horizontal velocity by a given factor. The original horizontal velocity is
restored as soon as there is no interference. For this problem we consider Firefly to be a single
point – the shape shown in Figure C.1 is merely for decorative purposes.

y

x

40

90

140

100
Mal

Firefly

shield

Figure C.1: Illustration of Sample Input 1.

Luckily, Mal recorded the positions of the shields and their influence on the autopilot during his
descent. What he needs now is a program telling him the right horizontal velocity setting.

Input

The input consists of:
• one line with two integers x, y (−107 ≤ x ≤ 107, |x| ≤ y ≤ 108 and 1 ≤ y), Firefly’s

coordinates relatively to Mal’s current position (in kilometres).
• one line with an integer n (0 ≤ n ≤ 100), the number of shields.
• n lines describing the n shields, the ith line containing three numbers:

– an integer li (0 ≤ li < y), the lower boundary of shield i (in kilometres).
– an integer ui (li < ui ≤ y), the upper boundary of shield i (in kilometres).
– a real value fi (0.1 ≤ fi ≤ 10.0), the factor with which the horizontal velocity is

multiplied during the traversal of shield i.
It is guaranteed that shield ranges do not intersect, i.e., for every pair of shields i 6= j
either ui ≤ lj or uj ≤ li must hold.

All real numbers will have at most 10 digits after the decimal point.

NWERC 2016 Problem C: Careful Ascent 5

NWERC 2016
Output

Output the horizontal velocity in km/min which Mal must choose in order to reach Firefly. The
output must be accurate to an absolute or relative error of at most 10−6.

Sample Input 1 Sample Output 1

100 140
1
40 90 0.2000000000

1.0

Sample Input 2 Sample Output 2

100 100
3
0 20 2.0000000000
50 100 0.1000000000
20 50 0.2000000000

1.96078431373

NWERC 2016 Problem C: Careful Ascent 6

NWERC 2016
Problem D

Driving in Optimistan

Multi-directional distance sign. Picture licensed
CC0 Public Domain.

Optimistan is a strange country. It is situated on an island with a
huge desert in the middle, so most people live in port towns along
the coast. As the name suggests, people of Optimistan (also called
Optimists) like to optimise everything, so they only built roads
necessary to connect all port towns together and not a single extra
road. That means that there is only one way to get from one port
town to another without visiting the same place twice.

The government installed multi-directional distance signs in 1-
kilometre intervals on one side of the road, to provide important
information to drivers. Thus whenever you go from one port town
to another, you pass the first sign at the port town and then one each
kilometre. Every distance sign contains the shortest distances to all
port towns, each written on a separate small sign directed towards
the goal town.

The signs also serve another important function: to guide drivers
on intersections. This means that distance of each intersection from
every port town is an integer number of kilometres.

You bought a tourist guide of Optimistan which does not have a map of the country, but it
contains a huge table with the shortest distances between all pairs of port towns. You quickly
calculated the average shortest distance between all pairs of port towns, but then you started
wondering: if the signs also contained shortest distances to all other signs, what would be the
average number written on a sign? Could this be calculated just from the distance table in the
tourist guide?

Input

The input consists of:
• one line with an integer n (2 ≤ n ≤ 500), the number of ports;
• n− 1 lines, the ith of which contains n− i integers. The jth integer on the ith line denotes

the distance between port i and port i+ j in kilometres. Each distance is between 1 and
106 (inclusive).

You can assume that the distances correspond to a road network in which there is exactly one
path between two port towns that does not visit the same place twice. All roads can be used in
both directions.

Output

Output one line with the average distances in kilometres between all pairs of distance signs in
Optimistan. Your answer should have an absolute or relative error of at most 10−9.

If it is impossible to determine the exact average of distances between all pairs of distance signs
in Optimistan, output “impossible”.

NWERC 2016 Problem D: Driving in Optimistan 7

https://pixabay.com/en/cyprus-ayia-napa-view-point-1212530/

NWERC 2016
Sample Input 1 Sample Output 1

3
4 4
2

2.13333333333333

Sample Input 2 Sample Output 2

4
2 2 2
2 2
2

1.6

NWERC 2016 Problem D: Driving in Optimistan 8

NWERC 2016
Problem E

Exam Redistribution

Picture from US Navy, public domain

Linda is giving an exam. When the exam is over, Linda
will redistribute the exams among the students for a peer
review, so they may grade each other’s answers and assign
preliminary scores.

The students are split up in several rooms of varying sizes.
Linda has devised the following scheme for redistributing
the exams:

1. Linda visits the first room, picks up all exams written
there, and places them in a pile.

2. In each subsequent room Linda takes exams from the
top of her pile and randomly distributes them to the
students in the room. She then picks up all exams
written in that room and adds them to the bottom of
her pile.

3. After having visited each room exactly once, Linda
returns to the first room, and distributes the remaining
exams from her pile there.

Naturally, it is imperative that no student receives their own exam to review, and that Linda
does not run out of exams in her pile while doing the redistribution (i.e., that when entering a
room after the first one, Linda’s pile contains at least as many exams as there are students in
the room). Whether or not this is the case depends on the order in which the rooms are visited.
We say that an ordering of the rooms is safe if Linda will not run out of exams in her pile when
visiting rooms in that order, and that there is no chance that any student receives their own exam
to review.

Can you find a safe order in which to visit the rooms (or determine that no safe order exists)?

Input

The input consists of:
• one line containing an integer n (2 ≤ n ≤ 30), the number of rooms.
• one line containing n integers s1, . . . , sn (1 ≤ si ≤ 100 for each i), where si is the number

of students in room i.

Output

If it is impossible to redistribute the exams safely, output “impossible”. Otherwise, output a
safe order in which to visit the rooms. If there are multiple safe orders, you may give any of
them.

NWERC 2016 Problem E: Exam Redistribution 9

https://commons.wikimedia.org/wiki/File:US_Navy_010120-N-2198V-001_Chief_Master-at-Arms_Jennifer_Sayler,_a_proctor_for_the_annual_chief_petty_officer_advancement_exam,_provides_assistance_to_one_of_the_many_Sailors_taking_the_exam.jpg

NWERC 2016
Sample Input 1 Sample Output 1

4
2 3 3 1

2 3 4 1

Sample Input 2 Sample Output 2

2
10 20

impossible

NWERC 2016 Problem E: Exam Redistribution 10

NWERC 2016
Problem F

Free Weights

A well-organised rack of weights.

The city of Bath is a noted olympic training
ground—bringing local, national, and even in-
ternational teams to practice. However, even
the finest gymnasium falls victim to the cardi-
nal sin. . . Weights put back in the wrong spots.

All of the pairs of dumbbells sit in no particu-
lar order on the two racks, possibly even with
some of them split between rows. Initially
each row has an equal number of dumbbells,
however, this being a well-funded professional
gym, there is infinite space at either end of
each to hold any additional weights.

To move a dumbbell, you may either roll it to
a free neighbouring space on the same row with almost no effort, or you may pick up and lift it
to another free spot; this takes strength proportional to its weight. For each pair of dumbbells,
both have the same unique weight.

What is the heaviest of the weights that you need to be able to lift in order to put identical
weights next to each other? Note that you may end up with different numbers of weights on
each row after rearranging; this is fine.

Input

The input consists of:
• one line containing the integer n (1 ≤ n ≤ 106), the number of pairs;
• two lines, each containing n integers w1 . . . wn (1 ≤ wi ≤ 109 for each i), where wi is the

mass of the weight i-th from the left along this row.
Every weight in the input appears exactly twice.

Output

Output the weight of the heaviest dumbbell that must be moved, in order that all items can be
paired up while lifting the smallest possible maximum weight.

Sample Input 1 Sample Output 1

5
2 1 8 2 8
9 9 4 1 4

2

NWERC 2016 Problem F: Free Weights 11

NWERC 2016
Sample Input 2 Sample Output 2

8
7 7 15 15 2 2 4 4
5 5 3 3 9 9 1 1

0

NWERC 2016 Problem F: Free Weights 12

NWERC 2016
Problem G

Gotta Nudge ’Em All
Nudgémon GO is a game in which players should earn as much experience points (XP) as
possible, by catching and evolving Nudgémon. You gain 100 XP for catching a Nudgémon and
500 XP for evolving a Nudgémon. Your friend has been playing this game a lot recently, but
you believe that his strategy is not optimal.

All Nudgémon are split into families, each of which has its own unique type of candy. The
Nudgémon in a family are ranked from weakest to strongest and hence form a chain. Any
Nudgémon that is not the strongest from its family can be evolved to the next ranked Nudgémon
from the same family.

Candies are a fundamental currency in the Nudgémon universe:
• When you catch a Nudgémon you earn 3 candies, all associated with the Nudgémon’s

family.
• When you irreversibly transfer a Nudgémon away from your possession, you earn 1 candy

associated with the Nudgémon’s family.
Every evolution of a Nudgémon consumes a specific amount of its family’s kind of candy.
Furthermore, the costs of evolutions along the family chain are non-decreasing, meaning that
higher-ranked evolutions in the family will cost the same or more as lower ones.

Here is an example of possible Nudgémon evolutions:

caterpillar

pupa

butterfly

3

7

dove

pigeon

aaabaaajss

3

7

mouse

electromouse

rat

1

5

Apart from making the developers money and nudging ’em all, the goal of this game is to earn
as much XP as possible to level up the player’s character and be able to encounter stronger
Nudgémon in the wild. As such, coinciding with the first goal, you can buy a Blessed Egg with
real money in the game. This item allows you to double your earned XP for the next 30 minutes
since activation, i.e. when the Egg is activated at time e (in seconds since the start of the game),
for any action taken on time t, you will earn double XP if and only if e ≤ t < e+ 1800.

At the start of the game your friend received a single Blessed Egg. Unfortunately, he completely
wasted it. You believe that it is better to only evolve Nudgémon while the Blessed Egg is active,
otherwise it is a huge waste of resources! To prove your point to your friend, you took a log of
all Nudgémon he caught with timestamps and decided to calculate the maximum amount of XP
he could have had right now if he was strategic about when to activate his Blessed Egg and only
evolved Nudgémon during the time it was active.

NWERC 2016 Problem G: Gotta Nudge ’Em All 13

NWERC 2016
Input

The input consists of:

• one line containing an integer f (0 ≤ f ≤ 105), the number of Nudgémon families;
• f lines describing a family of Nudgémon, where each line consists of the following

elements:
– an integer si (1 ≤ si ≤ 105), the number of Nudgémon in this family;
– si − 1 times the name of a Nudgémon, followed by an integer cj (1 ≤ cj ≤ 105), the

amount of candies (of appropriate type) consumed by evolving this Nudgémon;
– the name of the strongest Nudgémon in this family;

• one line containing an integer n (0 ≤ n ≤ 4 · 105), the number of Nudgémon your friend
caught;
• n lines containing an integer ti (0 ≤ ti ≤ 109) and a string pi, the time at which the

Nudgémon was caught and the name of the caught Nudgémon.

It is guaranteed that there are at most 105 Nudgémon kinds (
∑

i si ≤ 105). The Nudgémon in
each family are given in order of increasing rank, and thus the values of c in one family are
non-decreasing. Every Nudgémon name is a string of between 1 and 20 lowercase letters. The
times ti are non-decreasing (your friend is so quick he can catch multiple Nudgémon in a single
second). No Nudgémon name appears more than once within a family or within more than one
family, and all n Nudgémon that are caught belong to one of the families.

Output

Output the maximum amount of XP your friend could have had at the current time had he
activated his Blessed Egg at the optimal time and only evolved Nudgémon during the time it
was active.

Sample Input 1 Sample Output 1

3
3 caterpillar 3 pupa 7 butterfly
3 dove 3 pigeon 7 aaabaaajss
3 mouse 1 electromouse 5 rat
7
0 electromouse
500 electromouse
1000 electromouse
1500 rat
2000 aaabaaajss
2500 pigeon
3000 butterfly

5100

Sample Input 2 Sample Output 2

1
1 slownudge
2
0 slownudge
1800 slownudge

300

NWERC 2016 Problem G: Gotta Nudge ’Em All 14

NWERC 2016
Problem H

Hamiltonian Hypercube
Hypercube graphs are fascinatingly regular, hence you have devoted a lot of time studying the
mathematics related to them. The vertices of a hypercube graph of dimension n are all binary
strings of length n, and two vertices are connected if they differ in a single position. There are
many interesting relationships between hypercube graphs and error-correcting code.

One such relationship concerns the n-bit Gray Code, which is an ordering of the binary strings
of length n, defined recursively as follows. The sequence of words in the n-bit code first consists
of the words of the (n − 1)-bit code, each prepended by a 0, followed by the same words in
reverse order, each prepended by a 1. The 1-bit Gray Code just consists of a 0 and a 1. For
example the 3-bit Gray Code is the following sequence:

000, 001, 011, 010, 110, 111, 101, 100

Now, the n-bit Gray Code forms a Hamiltonian path in the n-dimensional hypercube, i.e., a path
that visits every vertex exactly once (see Figure H.1).

000 001

010 011

100 101

110 111

Figure H.1: The 3-dimensional hypercube and the Hamiltonian path corresponding to the 3-bit
Gray Code.

You wonder how many vertices there are between the vertices 0n (n zeros) and 1n (n ones) on
that path. Obviously it will be somewhere between 2n−1−1 and 2n−2, since in general 0n is the
first vertex, and 1n is somewhere in the second half of the path. After finding an elegant answer
to this question you ask yourself whether you can generalise the answer by writing a program
that can determine the number of vertices between two arbitrary vertices of the hypercube, in
the path corresponding to the Gray Code.

Input

The input consists of a single line, containing:
• one integer n (1 ≤ n ≤ 60), the dimension of the hypercube
• two binary strings a and b, both of length n, where a appears before b in the n-bit Gray

Code.

NWERC 2016 Problem H: Hamiltonian Hypercube 15

NWERC 2016
Output

Output the number of code words between a and b in the n-bit Gray Code.

Sample Input 1 Sample Output 1

3 001 111 3

Sample Input 2 Sample Output 2

3 110 100 2

NWERC 2016 Problem H: Hamiltonian Hypercube 16

NWERC 2016
Problem I

Iron and Coal

Coal. Photo by US Federal Government

There are many excellent strategy board games, and
your favourite among them is called “Steel Age”. It
offers many different paths to victory but you prefer
the blood-and-fire-strategy: build as many soldiers as
possible and club your opposition into submission. To
be able to build soldiers you need two resources: iron
ore and coal.

The board consists of different cells numbered from 1
to n which can contain resources. The rules for moving
from one cell to another are rather complicated: if you
can move from cell A to cell B, it does not always mean
that you can also move from B to A. For example, if
two cells are connected by a river, then you may be able
to move downstream, but not upstream, so long as you
didn’t invent a steam engine; however, it still could be
possible to reach the upstream cell by using roads and taking a detour over other cells.

At the beginning of the game you own only one such cell, where all your settlers are located.
At every move you are allowed to move an arbitrary number of settlers from a cell to one of
its accessible neighbours. By moving your settlers into a cell for the first time, you “claim” it.
Every claimed cell will bind one settler, which has to stay in this cell until the end of the game.
However, there is no need to leave a settler in your initial cell because it is where your palace is
located and thus the cell stays claimed for all time.

Your goal is to claim at least one cell containing the resource “iron ore” and at least one cell
with resource “coal” in order to be able to build soldiers. What is the minimal number of settlers
you need to reach this goal?

Input

The input consists of:
• One line with three integers n (2 ≤ n ≤ 105), the number of cells on the playing field, m

(1 ≤ m < n), the number of cells containing iron ore, and k (1 ≤ k < n), the number of
cells containing coal.
• One line with m distinct integers o1, . . . , om (1 ≤ oi ≤ n for all 1 ≤ i ≤ m), where
o1, . . . , om are the IDs of cells with iron ore.
• One line with k distinct integers c1, . . . , ck (1 ≤ ci ≤ n for all 1 ≤ i ≤ k), where
c1, . . . , ck are the IDs of cells with coal.
• n lines describing the topology of the board. The j-th line of this block specifies the

accessible neighbours of the j-th cell and consists of the following integers:
– One integer 0 ≤ a ≤ 10, the number of cells accessible from cell j.
– a distinct integers b1, . . . , ba (1 ≤ bi ≤ n, bi 6= j for all 1 ≤ i ≤ a), the IDs of the

cells accessible from cell j.
It is guaranteed, that no cell contains both resources, iron ore and coal. At the beginning of the
game you own only the cell with ID 1.

NWERC 2016 Problem I: Iron and Coal 17

https://commons.wikimedia.org/wiki/File:Coal_anthracite.jpg

NWERC 2016
Output

Output the minimum number of settlers needed to claim at least one cell with coal and at least
one cell with iron ore. Output “impossible” if it is impossible to own both, coal and iron
ore.

Sample Input 1 Sample Output 1

3 1 1
2
3
1 2
2 3 1
1 1

2

Sample Input 2 Sample Output 2

3 1 1
2
3
1 2
1 1
2 1 2

impossible

NWERC 2016 Problem I: Iron and Coal 18

NWERC 2016
Problem J

Jupiter Orbiter

The Juno spacecraft in front of Jupiter. Graphic by NASA

Although we imagine interplanetary probes to be very so-
phisticated pieces of technology, their information systems
are quite archaic. You might assume that they have a certain
amount of contiguous main memory and can store their data
wherever is convenient, but unfortunately that is not the case.
The probe’s main memory is organised in a number of FIFO
(first-in-first-out) queues. In such a queue, data has to be
taken out of the queue in the same order as it has been added
to it.

A probe has multiple sensors and each sensor is linked to
one of the queues. Whenever a sensor finishes recording, it appends the generated data to its
queue. A sensor can write data to the queue only if the queue has enough space left to take all
the data; if not, the data is lost.

In order to transfer data from the probe to Earth (in a process called downlinking), the path
between the satellite and Earth must not be blocked by anything (e.g. a planet like Jupiter)
and the antenna must be correctly positioned. During each downlink opportunity, data can be
taken from multiple queues and transmitted back to Earth. The total amount of data that can be
transmitted during a downlink opportunity depends on the length of the downlink opportunity
and distance to Earth. Sensors do not collect data during downlink opportunities, since all
electricity available is devoted to the transmitter.

The most important thing for scientists is not to lose any data recorded by sensors. In particular,
all queues have to be empty after the last downlink opportunity. The scientists have asked you to
write a program to determine whether all data can be transferred to Earth in a given time frame.

Input

• one line containing three positive integers n, q, s (1 ≤ n, q ≤ 30, 1 ≤ s ≤ 100), the
number of downlink windows, FIFO queues, and sensors, respectively.
• one line with s integers q1 . . . qs (1 ≤ qi ≤ q for each i), determining for each sensor the

queue it feeds its data into.
• one line with q integers c1 . . . cq (1 ≤ ci ≤ 106 for each i), determining for each queue the

size of the queue in megabytes.
• n lines, each describing one downlink window. Each contains s+ 1 non-negative integers.

– The first integer d (1 ≤ d ≤ 106) states the number of megabytes that can be
transferred to earth during the window.

– The following s numbers a1 . . . as (0 ≤ ai ≤ 106 for each i) describing the amount
of data (in megabytes) generated by each of the sensors after the last but before this
downlink window.

There will never be new data during a downlink window.

NWERC 2016 Problem J: Jupiter Orbiter 19

http://www.nasa.gov/mission_pages/juno/multimedia/pia13746.html

NWERC 2016
Output

Output “possible” if it is possible to transfer all data to Earth, and “impossible” other-
wise.

Sample Input 1 Sample Output 1

2 2 2
1 2
3 3
5 2 2
5 2 2

possible

Sample Input 2 Sample Output 2

2 2 2
1 2
3 3
1 2 2
5 2 2

impossible

NWERC 2016 Problem J: Jupiter Orbiter 20

NWERC 2016
Problem K
Kiwi Trees

Photo by Nathaniel Hayag, cc by-nd

You are about to plant a pair of fine kiwi trees inside your big property.
You are worried that tree branches would grow beyond the boundaries of
your property, making your neighbours complain. You must also avoid
planting the two trees too close to each other so that the branches of the
trees grow into each other, because that could lead to a loss of fruit.

The seller of the trees guaranteed that no branch or leaf will be farther than
4 meters from the trunk of its tree, thus we will model the trees as circles
of radius 4 meters. The trunks are perfectly vertical.

Local government regulations forbid certain shapes of properties. In par-
ticular, in order for government employees to be able to draw and handle
maps of the area, each property must satisfy the following properties:

1. The boundary is a simple polygon, i.e. the sides are non-intersecting and form a closed
path.

2. Each side length of the property is at least 30 meters long.

3. The angle between any two consecutive sides of the property must be at least 18 degrees
(10% of a straight angle), and at most 144 degrees (80% of a straight angle, or if you will,
the angle of a regular decagon).

Non-convex properties are allowed as long as the angles of consecutive sides follow rule 3 above,
so the inner angle at a vertex can also be between 360− 144 = 216 and 360− 18 = 342 degrees.
See Figure K.1 for an example.

Figure K.1: Illustration of Sample Input 1 and the solution given in Sample Output 1. All the
marked angles are at least 18 and at most 144 degrees.

Your property follows these rules. Can you plant two trees inside the property such that their
branches and leaves do not grow beyond its boundary, and that the branches and leaves of each
tree do not grow into the other tree?

NWERC 2016 Problem K: Kiwi Trees 21

https://www.flickr.com/photos/nathanhayag/7734742872/

NWERC 2016
Input

The input consists of:
• One line containing an integer n, where 3 ≤ n ≤ 2 000 is the number of vertices of the

polygon describing your property.
• n lines describing one vertex each. Each such line contains two integers x and y, where
0 ≤ x, y ≤ 107. These two numbers denote the x- and y-coordinates of a vertex in
millimeters, in a clockwise order as they appear in the polygon.

Also, each polygon side is at least 30 meters (30 000 millimeters) long and the angle of two
segments at a vertex is at least 18 degrees and at most 144 degrees. The polygon is non-
intersecting and closed, i.e. the last vertex is connected to the first vertex.

Output

If it is possible to plant two trees without their branches growing beyond the boundary of your
property or into each other, output two lines, each containing two real numbers x and y giving
the coordinates in millimeters of two points where the trees can be planted.

Otherwise, print “impossible”.

You may assume that increasing or decreasing the radius by 1 mm will not change whether or
not it is possible to plant the trees. Your answer will be accepted if the tree locations are at least
3999 mm away from the boundary and at least 2 · 3999 mm away from each other.

Sample Input 1 Sample Output 1

4
0 3000
29000 38000
56000 0
28000 14000

32266.13633130 18219.22050526
24266.13633130 18219.22050526

Sample Input 2 Sample Output 2

3
50000 50000
69500 73000
99000 80000

impossible

NWERC 2016 Problem K: Kiwi Trees 22

