
ICPC CERC 2022

Solution Presentation

Ljubljana, 27. 11. 2022

Solution Presentation

Ljubljana, 27. 11. 2022

L - The Game

Simulate the described card game.

• maintain lists of cards:
– rows, hand, deck

• careful implementation
– prioritize backward moves

– choose best regular move

• sort by (abs. difference, hand, row)

hand: 16, 55, 70, 67, 13, 9, 12, 40

deck: 14, 90, 31, 33, …

rows:
1, 3
1, 7, 8, 9
100, 60, 70
100

D - Deforestation

Cut a tree into parts of size at most W using fewest cuts.

• recursive input

• greedy strategy

• prune the tree from leaves towards the root
– cut off part of size W

• node with “stumps” of sizes xi < W
– ∑ xi > W --> cut off largest stumps

– ∑ xi ≤ W --> cut up parent branch

• solve(a) … optimal cutting of subtree rooted in a
– minimum number of cuts

– remaining size of the stump

• O(n log n)
– challenge: O(n)

x1

x2

x3 x4

x5

E - Denormalization

Undo normalization of a list of small integers.

• too many possible vector lengths … d = √(∑ ai
2)

• intermediate step: normalize to min=1 (divide by k=min(a))

• reverse direction
– norm -> min: divide by min(x)

– min -> a:

• ai = mini ∙ k, 1 ≤ k ≤ 10 000

• find integer k that yields ai that are closest to integer values and in range

• O(AN)

• making an assumption about the value of min(a) or max(a)

a = 5 6 10 15 30 6
min = 1.000 1.196 1.993 2.993 5.978 1.196
x/norm = 0.138 0.165 0.275 0.413 0.825 0.165

C - Constellations

Compute hierarchical clustering of points using squared
Euclidean distance.

• brute-force: O(n5) O(n3)

• constellation … list of stars

• priority queue of potential constellations
– (distance, min(a,b), max(a,b))

• merge, update distances
𝑑′ 𝐴, 𝐵 = σ𝑎σ𝑏 𝑎 − 𝑏 2

𝑑′ 𝐴 + 𝐵, 𝐶 = 𝑑′ 𝐴, 𝐶 + 𝑑′ 𝐵, 𝑐

• O(n2 log n)
– form O(n) constellations

– update O(n) distances in O(log n)

B

A

C

D

A+B

G - Greedy Drawers

Construct a counterexample for a greedy assignment of
notebooks to drawers.

• does a notebook fit into a drawer?
– horizontal orientation

• possible counterexample:
– notebooks of dimensions (1,x), (2,x-1), …, (x,x)

– a drawer can contain a range of notebooks

– 50% chance of suboptimal assignment

– repeat the pattern

• prob. of success (greedy finds suboptimal solution):
– single case: p1 = 1 - 0.5(150/8)

– all 20 cases: p = p1
20 = 99.995%

K - Skills in Pills

Find an arrangement with a minimum number of pills that
avoids taking two pills on the same day.

• if we could take both pills on the same day
– take a pill as late as possible (pill A every k-th day and B every j-th)

• resolve first “collision”
– shift one of the pills one day back; which one?

• dynamic programming
– f(n, AB) … min number of pills taken in the remaining n days if we take pills A

and B in this order in preceding two days
– compute next collision
– O(n)

• challenge: sublinear greedy solution

A B A AB

A B A

B A AB

e.g. A=2, B=3, N=8

take A early

take B early

6 pills

7 pills

B - Combination Locks

Find the winner in a two-player game with non-repeating
states

• Hypercube graph
– node = difference pattern, forbidden nodes

– can move to any adjacent node

– bipartite

• alternatingly building a simple path in a graph

• possible strategy: following edges in a maximum matching

• maximum matching that doesn’t include the starting node?
– Yes: Bob can follow matched edges

• stuck at unmatched node -> there would exist an augmenting path

– No: Alice can follow matched edges
• stuck at unmatched node -> flip edges, get an unmatched start node

F - Differences

Find a string with Hamming distance K to all other strings.

• O(n2) too slow

• precompute sets of strings that have
character c at position j … f(j,c)

• sets of strings differing from string Sx at
each position j (union)

• Hamming distances from Sx

• speed-up:
– use bit masks to represent sets of strings?

– use polynomial hashes ... O(nm)

• e.g., f(0,A) = (p0+p2) % mod, g(j) = ∑ f(j,A)

• Sx … ∑j g(j) – f(j, Sx,j) should be equal to ∑i Kpi - px

j=0
A: {0,2}
B: {1}
C: {3,4,5}

{0,1,2}

j=1
A: {1,3,4}
B: {0,2}
C: {5}

{0,2,5}

Sx=CA, S={AB, BA, AB, CA, CA, CC}

d = [2, 1, 2, 0, 0, 1]

goal: [K, K, K, 0, K, K]

I - Money Laundering

Compute individual’s ownership shares in a network of
company ownerships.

• simulate redistribution
– x = [x1, …, xn]T … vector of company incomes
– redistribution matrix A, x’ = Ax
– Ai,j … share received by i from j
– Ak converges to 0

• accumulate output values
– o = x + Ax + A2x + …
a) geometric series

• o = (I - A)-1 x
• inverse (Gauss–Jordan elimination)

b) power method

• y = [x1, …, xn, o1, …, on]T, B=
𝐴 0
𝐼 𝐼

• y’ = By, Bbig … exponentiation by squaring

oi

P1
P2

Ci

Cj

Ai,j

xi

xj

I - Money Laundering

• industrial sectors = strongly connected components
– Tarjan, Kosaraju, …

– small!

– ownership structure (income) from preceding companies

• matrix X: Xi,j … income received by company i from company j

– extract submatrix of X relevant to the SCC (dim. S x C)

– propagate income within SCC

– distribute to persons and companies

• O(C/S S3 + K C)
– C … companies

– K … edges

– S … max size of SCC

J - Mortgage

Given the monthly incomes, compute the largest monthly
payment that you can afford in the range of months [L … R].

a) algebraic approach

• consider a fixed payment x
– bj = balance on day j

– range minimum query (tree)

• unknown x?
– sj(x) is a linear function of x

– store lower envelopes s’(x) of sj(x) in each node

– binary search for x in each range: s(x) ≥ sL-1(x)

• sL-1 is the flattest

– O(n log n + m log2 n)

sL-1(x)

s’(x)

J - Mortgage

b) geometric approach
– points (i, ci), ci = ∑j=1..i ai

– query [L, R] … steepest line
originating from L-1

• partition points into groups
– lower hull

– tree structure of groups

• O(n) groups overall

• O(log n) groups cover every query range

• binary search in a group
– max prefix of the hull with segments

that are clockwise to the line from L-1

• careful with overflows

• O(n log n + m log2 n)

L

R

L

A - Bandits

Protect nodes in a tree at a distance at most r from X and
answer queries about the level of protection of road Y.

• centroid decomposition
• new security contract at X with radius r

– mark parts of the tree as protected … O(log2 n)

– store affected distance in a tree structure

X

A

B

C

r

r-d(X,A)
*excluding subtree of X

r-d(X,B)

r-d(X,C)

A - Bandits

• coverage of edge U-V with length l

– V … more important centroid

– protection originating from subcomponents of V (U, X, A), entering via U

• # of markings ≥ l + d(U,A) [excluding subtree of X]

– protection from large components (e.g. C) containing U and V

• # of markings ≥ l + min(d(U,C), d(V,C)) [excluding subtree of B]

• O(Q log2 N)

V

U

A

B

C

X U V

≥ l + d(U,A)
*excluding
subtree of X

X

A
D

H - Insertions

Insert string T into S to maximize the number of patterns P.

• consider all insertions after k chars

• count P in S and T, subtract those broken by insertion
– KMP … locations of P in S and T

a) small patterns |P|≤|T|
– p = len. of longest prefix of P as a suffix of S[:k] (KMP search phase)

• is there an appropriate suffix of P (of length x=|P|-p) in T?
– len. of longest suffix of P ending in T[L] (z-algorithm) equal to L?

• precompute matches for shorter prefixes (KMP fail. fun.)

– O(|S| + |T| + |P|)

TS[:k] S[k:]p x

H - Insertions

b) large patterns |P| > |T|
– can expand across entire T

• does T match with shifted P? KMP search for T in P

– how many prefixes of P at the end of S[:k] match with
suffixes of P at the start of S[k:]?

• consider all pairs of shorter prefixes and suffixes … O(|S|∙|P|2)

• consider only shorter prefixes … O(|S|∙|P|)

– as in the case for small patterns (z-algorithm)

TS[:k] S[k:]
i j

H - Insertions

• trees of KMP failure functions f(i) of P and g(j) PR

– x(i,j) = number of matching nodes (correct sum of length) on paths from
i and j to the root

– x(i,j) = x(i,g(j)) + matchj(i) = x(f(i),j) + matchi(j)

– precomputation … O(|P|1.5)

• x(i, 0)

• x(i’, j) for well-positioned special nodes i’ (including root)
– subtrees of size sqrt(n)

• x(i,j) … move towards root to first special node (≤ sqrt(n))

• O(|S|+|T|+|P|1.5)

i

j

The End

