## ICPC CERC 2022

## Solution Presentation

University of Ljubljana
Faculty of Computer and Information Science


Ljubljana, 27. 11. 2022

## L - The Game

## Simulate the described card game.

- maintain lists of cards:
- rows, hand, deck
- careful implementation
- prioritize backward moves
- choose best regular move
- sort by (abs. difference, hand, row)

```
rows:
1, 3
1, 7, 8, 9
100, 60, 70
100
hand: 16, 55, 70, 67, 13, 9, 12, 40
deck: 14, 90, 31, 33, ...
```


## D - Deforestation

## Cut a tree into parts of size at most W using fewest cuts.

- recursive input
- greedy strategy
- prune the tree from leaves towards the root
- cut off part of size W
- node with "stumps" of sizes $x_{i}<W$
- $\sum x_{i}>W$--> cut off largest stumps
- $\sum x_{i} \leq W$--> cut up parent branch
- solve(a) ... optimal cutting of subtree rooted in a
- minimum number of cuts

- remaining size of the stump
- $O(n \log n)$
- challenge: $O(n)$


## E - Denormalization

## Undo normalization of a list of small integers.

- too many possible vector lengths ... $d=V\left(\sum a_{i}{ }^{2}\right)$
- intermediate step: normalize to $\mathrm{min}=1$
(divide by $\mathrm{k}=\min (\mathrm{a})$ )

| $\mathrm{a}=$ | 5 | 6 | 10 | 15 | 30 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\min =$ | 1.000 | 1.196 | 1.993 | 2.993 | 5.978 | 1.196 |
| $\mathrm{x} /$ norm $=$ | 0.138 | 0.165 | 0.275 | 0.413 | 0.825 | 0.165 |

- reverse direction
- norm -> min: divide by min(x)
- min -> $a$ :
- $a_{i}=\min _{\mathrm{i}} \cdot \mathrm{k}, \quad 1 \leq \mathrm{k} \leq 10000$
- find integer $k$ that yields $a_{i}$ that are closest to integer values and in range
- O(AN)
- making an assumption about the value of $\min (a)$ or $\max (a)$


## C - Constellations

Compute hierarchical clustering of points using squared Euclidean distance.

- brute-force: $\theta\left(n^{5}\right) O\left(n^{3}\right)$
- constellation ... list of stars
- priority queue of potential constellations
- (distance, $\min (a, b), \max (a, b))$
- merge, update distances

$$
\begin{aligned}
& d^{\prime}(A, B)=\sum_{a} \sum_{b}\|a-b\|^{2} \\
& d^{\prime}(A+B, C)=d^{\prime}(A, C)+d^{\prime}(B, c)
\end{aligned}
$$

- $O\left(n^{2} \log n\right)$

- form O(n) constellations
- update $O(n)$ distances in $O(\log n)$


## G - Greedy Drawers

Construct a counterexample for a greedy assignment of notebooks to drawers.

- does a notebook fit into a drawer?
- horizontal orientation
- possible counterexample:
- notebooks of dimensions ( $1, x$ ), ( $2, x-1$ ), ..., $(x, x)$
- a drawer can contain a range of notebooks
- $50 \%$ chance of suboptimal assignment
- repeat the pattern
- prob. of success (greedy finds suboptimal solution):
- single case: $p_{1}=1-0.5^{(150 / 8)}$
- all 20 cases: $p=p_{1}{ }^{20}=99.995 \%$


## K - Skills in Pills

Find an arrangement with a minimum number of pills that avoids taking two pills on the same day.

- if we could take both pills on the same day
- take a pill as late as possible (pill A every k-th day and B every j-th)
- resolve first "collision"
- shift one of the pills one day back; which one?

$$
\text { e.g. } A=2, B=3, N=8
$$

- dynamic programming

| A | B | A |  | AB |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| take A early |  |  | A | B | A |  |
| take B early |  |  | B | A |  | AB |

- $f(n, A B)$... min number of pills taken in the remaining $n$ days if we take pills $A$ and $B$ in this order in preceding two days
- compute next collision
- O(n)
- challenge: sublinear greedy solution


## B - Combination Locks

## Find the winner in a two-player game with non-repeating

## states

- Hypercube graph
- node = difference pattern, forbidden nodes
- can move to any adjacent node

- bipartite
- alternatingly building a simple path in a graph
- possible strategy: following edges in a maximum matching
- maximum matching that doesn't include the starting node?
- Yes: Bob can follow matched edges
- stuck at unmatched node -> there would exist an augmenting path
- No: Alice can follow matched edges
- stuck at unmatched node -> flip edges, get an unmatched start node


## F - Differences

Find a string with Hamming distance K to all other strings.

$$
S_{x}=C A, S=\{A B, B A, A B, C A, C A, C C\}
$$

- $O\left(n^{2}\right)$ too slow
- precompute sets of strings that have character c at position $\mathrm{j} . . \mathrm{f}(\mathrm{j}, \mathrm{c})$

|  | $\mathrm{j}=0$ |
| :--- | :--- |
| A: $\{0,2\}$ | $\mathrm{C}=1$ |
| B: $:\{1\}$ | B: $\{0,2\}$ |
| C: $\{3,4,5\}$ | C: $\{5\}$ |

- sets of strings differing from string $S_{x}$ at each position $j$ (union)
- Hamming distances from $\mathrm{S}_{\mathrm{x}}$
$d=[2,1,2,0,0,1]$
- speed-up:
- use bit masks to represent sets of strings?
goal: $[K, K, K, 0, K, K]$
- use polynomial hashes ... $O(n m)$
- e.g., $f(0, A)=\left(p^{0}+p^{2}\right) \%$ mod, $g(j)=\Sigma f(j, A)$
- $S_{x} \ldots \Sigma_{j} g(j)-f\left(j, S_{x, j}\right)$ should be equal to $\Sigma_{i} K p^{i}-p^{x}$


## I-Money Laundering

## Compute individual's ownership shares in a network of

 company ownerships.- simulate redistribution
- $x=\left[x_{1}, \ldots, x_{n}\right]^{\top} \ldots$ vector of company incomes
- redistribution matrix $\mathrm{A}, \mathrm{x}^{\prime}=\mathrm{Ax}$
- $A_{i, j}$... share received by $i$ from $j$
- $A^{k}$ converges to 0
- accumulate output values
$-0=x+A x+A^{2} x+\ldots$
a) geometric series
- $o=(I-A)^{-1} x$
- inverse (Gauss-Jordan elimination)
b) power method

- $\mathrm{y}=\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{o}_{1}, \ldots, \mathrm{o}_{n}\right]^{\top}$,
$\mathrm{B}=\left[\begin{array}{ll}A & 0 \\ I & I\end{array}\right]$
- $y^{\prime}=B y, \quad B^{\text {big }} \ldots$ exponentiation by squaring


## I-Money Laundering

- industrial sectors = strongly connected components
- Tarjan, Kosaraju, ...
- small!
- ownership structure (income) from preceding companies
- matrix $\mathrm{X}: \mathrm{X}_{\mathrm{i}, \mathrm{j}} \ldots$ income received by company i from company j
- extract submatrix of $X$ relevant to the SCC (dim. $S \times C$ )
- propagate income within SCC
- distribute to persons and companies
- $\mathrm{O}\left(\mathrm{C} / \mathrm{S} \mathrm{S}^{3}+\mathrm{K} C\right)$
- C ... companies
- K ... edges
- S ... max size of SCC



## J - Mortgage

Given the monthly incomes, compute the largest monthly payment that you can afford in the range of months [L ... R].
a) algebraic approach

- consider a fixed payment $x$
$-b_{j}=$ balance on day $j$
- range minimum query (tree)
- unknown $x$ ?
- $s_{j}(x)$ is a linear function of $x$
- store lower envelopes $s^{\prime}(x)$ of $s_{j}(x)$ in each node
- binary search for $x$ in each range: $s(x) \geq S_{L-1}(x)$



## J - Mortgage

b) geometric approach

- points ( $\mathrm{i}, \mathrm{c}_{\mathrm{i}}$ ), $\quad \mathrm{c}_{\mathrm{i}}=\sum_{\mathrm{j}=1 . . \mathrm{i}} \mathrm{a}_{\mathrm{i}}$
- query $[L, R]$... steepest line originating from L-1
- partition points into groups
- lower hull
- tree structure of groups

- O(n) groups overall
- O(log n) groups cover every query range
- binary search in a group
- max prefix of the hull with segments that are clockwise to the line from L-1
- careful with overflows
- O( $n \log n+m \log ^{2} n$ )



## A - Bandits

## Protect nodes in a tree at a distance at most $r$ from $X$ and answer queries about the level of protection of road Y .

- centroid decomposition
- new security contract at $X$ with radius $r$
- mark parts of the tree as protected ... $O\left(\log ^{2} n\right)$
- store affected distance in a tree structure



## A - Bandits

- coverage of edge U-V with length I
- V ... more important centroid
- protection originating from subcomponents of $V(U, X, A)$, entering via $U$
- \# of markings $\geq I+d(U, A)$ [excluding subtree of $X$ ]
- protection from large components (e.g. C) containing U and V
- \# of markings $\geq \mathrm{I}+\min (\mathrm{d}(\mathrm{U}, \mathrm{C}), \mathrm{d}(\mathrm{V}, \mathrm{C}))$
[excluding subtree of $B$ ]
- $O\left(Q \log ^{2} N\right)$



## H - Insertions

## Insert string $T$ into $S$ to maximize the number of patterns $P$.

- consider all insertions after $k$ chars
- count $P$ in $S$ and $T$, subtract those broken by insertion
- KMP ... locations of $P$ in $S$ and $T$

a) small patterns $|\mathrm{P}| \leq|\mathrm{T}|$
$-\quad p=$ len. of longest prefix of $P$ as a suffix of $S[: k]$ (KMP search phase)
- is there an appropriate suffix of $P$ (of length $x=|P|-p$ ) in $T$ ?
- len. of longest suffix of $P$ ending in $T[L]$ ( $z$-algorithm) equal to $L$ ?
- precompute matches for shorter prefixes (KMP fail. fun.)
$-\quad \mathrm{O}(|\mathrm{S}|+|\mathrm{T}|+|\mathrm{P}|)$


## H - Insertions


b) large patterns $|\mathrm{P}|>|\mathrm{T}|$

- can expand across entire $T$
- does T match with shifted P? KMP search for T in $P$
- how many prefixes of $P$ at the end of $S[: k]$ match with suffixes of $P$ at the start of $S[k:]$ ?
- consider all pairs of shorter prefixes and suffixes ... $\mathrm{O}\left(|\mathrm{S}| \cdot|\mathrm{P}|^{2}\right)$
- consider only shorter prefixes ... $\mathrm{O}(|\mathrm{S}| \cdot|\mathrm{P}|)$
- as in the case for small patterns (z-algorithm)


## H - Insertions

- trees of KMP failure functions $f(i)$ of $P$ and $g(j) P^{R}$

$-x(i, j)=$ number of matching nodes (correct sum of length) on paths from $i$ and $j$ to the root
$-x(i, j)=x(i, g(j))+$ match $_{j}(i)=x(f(i), j)+$ match $_{i}(j)$
- precomputation ... $\mathrm{O}\left(|\mathrm{P}|^{1.5}\right)$
- $x(i, 0)$
- $x\left(i^{\prime}, j\right)$ for well-positioned special nodes i' (including root)
- subtrees of size sqrt(n)
- $x(i, j)$... move towards root to first special node ( $\leq \operatorname{sqrt}(\mathrm{n})$ )
- $\mathrm{O}\left(|\mathrm{S}|+|\mathrm{T}|+|\mathrm{P}|^{1.5}\right)$


## The End

