
CERC 2020
Presentation of solutions

September 26, 2021



Rescue Mission

I Task: Given an array a = a1, a2, · · · , aN of integers, for each
positition i in the array find the smallest subarray starting at i
with sum equal to zero modulo 10.

I Observation: Consider the array of prefix sums modulo 10 f
such that fi =

∑i
j=1 ai mod 10 with f0 = 0.

I A subarray ai , ai+1, · · · , aj has
∑j

k=i ak = 0 mod 10 if and
only if fi−1 = fj mod 10.



Rescue Mission

I Task: Given an array a = a1, a2, · · · , aN of integers, for each
positition i in the array find the smallest subarray starting at i
with sum equal to zero modulo 10.

I Observation: Consider the array of prefix sums modulo 10 f
such that fi =

∑i
j=1 ai mod 10 with f0 = 0.

I A subarray ai , ai+1, · · · , aj has
∑j

k=i ak = 0 mod 10 if and
only if fi−1 = fj mod 10.



Rescue Mission

I Task: Given an array a = a1, a2, · · · , aN of integers, for each
positition i in the array find the smallest subarray starting at i
with sum equal to zero modulo 10.

I Observation: Consider the array of prefix sums modulo 10 f
such that fi =

∑i
j=1 ai mod 10 with f0 = 0.

I A subarray ai , ai+1, · · · , aj has
∑j

k=i ak = 0 mod 10 if and
only if fi−1 = fj mod 10.



I Solution:
I For each position i we want to find the closest next position j

such that their prefix sums are equal modulo 10, that is
fi−1 = fj .

I For each i ∈ {0, 1, · · · , 9} keep a queue qv of all positions j
where fj = v , sorted in ascending order.

I When finding the closest endpoint for subarray starting at i ,
keep popping elements from qfi−1 until you reach an element
greater or equal to i .

I The resulting complexity is O(N).

I Similar solution using binary search with complexity
O(N log(N)) also easily passes.



Pizzo Collectors

I Task: Find the maximum profit which can be achieved after
replacing all ’?’ in the cyclic string s by valid letters

I The length of s is an integer power of a prime number

I Profit for string s is calculated as

∑
d∈D

d−1∑
i=0

I (i , d) ·
N/d−1∑
j=0

c[s[(i + d · j) mod N]]

I where N is the length of s, D is the set of divisors of N and c
is given on the input.

I I (i , d) = 1 if all letters in the subcycle ai , ai+d , ai+2d , · · · , ai+N

are equal. Otherwise I (i , d) = 0.

I In other words, the resulting profit is equal to the sum of the
costs of letters along each possible cycle whose length is a
divisor of N (including 1 and N).



Pizzo Collectors

I Task: Find the maximum profit which can be achieved after
replacing all ’?’ in the cyclic string s by valid letters

I The length of s is an integer power of a prime number

I Profit for string s is calculated as

∑
d∈D

d−1∑
i=0

I (i , d) ·
N/d−1∑
j=0

c[s[(i + d · j) mod N]]

I where N is the length of s, D is the set of divisors of N and c
is given on the input.

I I (i , d) = 1 if all letters in the subcycle ai , ai+d , ai+2d , · · · , ai+N

are equal. Otherwise I (i , d) = 0.

I In other words, the resulting profit is equal to the sum of the
costs of letters along each possible cycle whose length is a
divisor of N (including 1 and N).



Pizzo Collectors

I Observation: The profit induced by the cycle C of size pi+1

depends only on the assignment of letters inside the p
different cycles C1,C2, · · · ,Cp of size pi that it contains.

I No position in the string is shared between two different cycles
of size pi and their solution can be computed independently.

I This leads to the following recursive solution:
I For each cycle of size pi+1 compute its maximum total profit

and its profit if all letters are set to a (set to −∞ if not
possible).

I The maximum total profit of C is the sum of maximums for all
the cycles C1,C2, · · · ,Cp it contains.

I The profit of C if all its letters are set to a is the profit of all
the cycles C1,C2, · · · ,Cp it contains when set to a plus
pi+1 · c[a].

I Easy to compute for cycles of size 1. The final solution equals
to solution for cycle of size pk = N.



I Complexity: The size of alphabet is bounded and small
(a ∈ {A,B, · · · ,Z}) and for N = pk each letter is contained
in exactly k + 1 = O(log(N)) different cycles.

I The resulting complexity of the solution is O(N log(N))



Storage problem

I Task: Given a set of N items with weights w1,w2, · · · ,wN

and a threshold K , for each item p and integer j
(1 ≤ j ≤ N − 1) compute the number of subsets S ⊆ N \ {p}
of j items such that W (S) ≤ K and W (S ∪ {p}) > K , where
W (S) is the total weight of S .



Storage problem

I Task: Given a set of N items with weights w1,w2, · · · ,wN

and a threshold K , for each item p and integer j
(1 ≤ j ≤ N − 1) compute the number of subsets S ⊆ N \ {p}
of j items such that W (S) ≤ K and W (S ∪ {p}) > K , where
W (S) is the total weight of S .



Storage problem

I DP solution in O(N3K ).
I Let f (S , i , j) be the number of subsets such that the following

holds
I All the items are in S .
I The total weight is i .
I The subsets have exactly j items

I It holds f (∅, 0, 0) = 1.

I Let Sp be the set of items Sp = {1, 2, · · · , p}.
I The DP transition: f (Sp, i , j) ={

f (Sp−1, i , j) if i < wn or j = 0

f (Sp−1, i , j) + f (Sp−1, i − wn, j − 1) otherwise

I Having f (SN−1, i , j) we can compute the answer for the last
item and subsets size j :
I resi,j =

∑K−1
i=K−wn

f (SN−1, i , j)

I The order of items in the DP does not matter, we can
recalculate for each of the N items using the same formula.



Storage problem

I One possible optimization to O(N2K ):

I For each item p set wp = min(wi ,K ).

I Compute f (SN , i , j) using the procedure above for
0 ≤ j ≤ 2 · K − 1.

I Copy the table for f (SN , i , j) and recalculate for f (SN \ {p})
for each item p:

I f (SN \ {p}, i , j) ={
f (SN , i , j) if i < wp or j = 0

f (SN , i , j)− f (SN \ {p}, i − wp, j − 1) otherwise

I Same as before, having f (SN \ {p}, i , j) we can compute the
answer for item p and subsets size j :
I resi,j =

∑K−1
i=K−wn

f (SN \ {p}, i , j)



Storage problem

I The initial computation of f (SN , i , j) takes O(N2K )

I Copying the table and recalculation to f (SN \ {p}, i , j) takes
O(N · K ). This is repeated for each item.

I In total O(N2K ).



Excavation

B

B

B

B

B

B

B

B

I We model the situation as a graph with edges between
adjacent excavators (movement pattern-wise)

I If such graph is not connected, there is no solution

I Otherwise the graph is connected and has a spanning tree

I One solution is to successively pluck leaves of some spanning
tree leaf-by-leaf



Excavation

B

B

B

B

B

B

B

B

I We model the situation as a graph with edges between
adjacent excavators (movement pattern-wise)

I If such graph is not connected, there is no solution

I Otherwise the graph is connected and has a spanning tree

I One solution is to successively pluck leaves of some spanning
tree leaf-by-leaf



Excavation

B

B

B

B

B

B

B

B

I We model the situation as a graph with edges between
adjacent excavators (movement pattern-wise)

I If such graph is not connected, there is no solution

I Otherwise the graph is connected and has a spanning tree

I One solution is to successively pluck leaves of some spanning
tree leaf-by-leaf



Excavation

B

B

B

B

B

B

B

B

I We model the situation as a graph with edges between
adjacent excavators (movement pattern-wise)

I If such graph is not connected, there is no solution

I Otherwise the graph is connected and has a spanning tree

I One solution is to successively pluck leaves of some spanning
tree leaf-by-leaf



Excavation

B

B

B

B

B

B

B

I We model the situation as a graph with edges between
adjacent excavators (movement pattern-wise)

I If such graph is not connected, there is no solution

I Otherwise the graph is connected and has a spanning tree

I One solution is to successively pluck leaves of some spanning
tree leaf-by-leaf



Excavation

B

B

B

B

B

B

I We model the situation as a graph with edges between
adjacent excavators (movement pattern-wise)

I If such graph is not connected, there is no solution

I Otherwise the graph is connected and has a spanning tree

I One solution is to successively pluck leaves of some spanning
tree leaf-by-leaf



Excavation

B

B

B

B

B

I We model the situation as a graph with edges between
adjacent excavators (movement pattern-wise)

I If such graph is not connected, there is no solution

I Otherwise the graph is connected and has a spanning tree

I One solution is to successively pluck leaves of some spanning
tree leaf-by-leaf



Excavation

B

B

B

B

I We model the situation as a graph with edges between
adjacent excavators (movement pattern-wise)

I If such graph is not connected, there is no solution

I Otherwise the graph is connected and has a spanning tree

I One solution is to successively pluck leaves of some spanning
tree leaf-by-leaf



Excavation

B

B

B

I We model the situation as a graph with edges between
adjacent excavators (movement pattern-wise)

I If such graph is not connected, there is no solution

I Otherwise the graph is connected and has a spanning tree

I One solution is to successively pluck leaves of some spanning
tree leaf-by-leaf



Excavation

B

B

I We model the situation as a graph with edges between
adjacent excavators (movement pattern-wise)

I If such graph is not connected, there is no solution

I Otherwise the graph is connected and has a spanning tree

I One solution is to successively pluck leaves of some spanning
tree leaf-by-leaf



Excavation

B

I We model the situation as a graph with edges between
adjacent excavators (movement pattern-wise)

I If such graph is not connected, there is no solution

I Otherwise the graph is connected and has a spanning tree

I One solution is to successively pluck leaves of some spanning
tree leaf-by-leaf



Tobacco Growing

I Notice that if we plant a single tobacco in a grass corner with
flower tile borders, we keep obtaining rows of Pascal triangle
= ”Corner gadget” to obtain powers of two

0

0

0

0

0

0 0 0 0 0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

01



Tobacco Growing

I Notice that if we plant a single tobacco in a grass corner with
flower tile borders, we keep obtaining rows of Pascal triangle
= ”Corner gadget” to obtain powers of two

0

0

0

0

0

0 0 0 0 0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

01



Tobacco Growing

I Notice that if we plant a single tobacco in a grass corner with
flower tile borders, we keep obtaining rows of Pascal triangle
= ”Corner gadget” to obtain powers of two

0

0

0

0

0

0 0 0 0 0 0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

01



Tobacco Growing

I Notice that if we plant a single tobacco in a grass corner with
flower tile borders, we keep obtaining rows of Pascal triangle
= ”Corner gadget” to obtain powers of two

0

0

0

0

0

0 0 0 0 0 0

0

0

1

2

0

0

0

2

2

0

0

0

0

1

0

0

0

0

0

0

0

0

0

03



Tobacco Growing

I Notice that if we plant a single tobacco in a grass corner with
flower tile borders, we keep obtaining rows of Pascal triangle
= ”Corner gadget” to obtain powers of two

0

0

0

0

0

0 0 0 0 0 0

0

1

3

8

0

0

3

6

8

0

0

0

3

3

0

0

0

0

1

0

0

0

0

07



Tobacco Growing

I However we need multiple powers of 2 at the same time ⇒
”Delay gadget” to deliver starting 1 to a ”Corner gadget” for
a particular power

0

0

0

0

0 0

0

0

0

0

0

0

0

0

1



Tobacco Growing

I However we need multiple powers of 2 at the same time ⇒
”Delay gadget” to deliver starting 1 to a ”Corner gadget” for
a particular power

0

0

0

0

0 0

0

0

0

0

0

0

0

1

1



Tobacco Growing

I However we need multiple powers of 2 at the same time ⇒
”Delay gadget” to deliver starting 1 to a ”Corner gadget” for
a particular power

0

0

0

0

0 0

0

0

0

0

0

0

1

2

2



Tobacco Growing

I However we need multiple powers of 2 at the same time ⇒
”Delay gadget” to deliver starting 1 to a ”Corner gadget” for
a particular power

0

0

0

0

0 0

0

0

0

0

0

1

3

5

4



Tobacco Growing
I We combine Corner gadgets for all powers with Delay gadgets

corresponding to the maximal needed power 259

I We grow tobacco for 59 days and Corner gadget for power 2i

is assigned a Delay gadget of length 59− i

I Solution consists of Pascal triangle rows from Corner gadgets
representing powers present in the target number



Roof

I Task: Compute the total length of a path which goes from S
to E .

start

end



Roof

I Task: Compute the total length of a path which goes from S
to E .

start

end



Roof

I Task: Compute the total length of a path which goes from S
to E .

start

end



Roof

I Shortest sum of horizontal paths ⇒ line segment form S to E
from the bird’s view perspective.

I Can be decomposed into horizontal and vertical part.

I Horizontal part is
√

(Sx − Ex)2 + (Sy − Ey )2

I Vertical part is composed of differences in height of “visited”
cuboids.

start

end

I There is a special case when going through a corner of four
cuboids.



Roof

I Shortest sum of horizontal paths ⇒ line segment form S to E
from the bird’s view perspective.

I Can be decomposed into horizontal and vertical part.

I Horizontal part is
√

(Sx − Ex)2 + (Sy − Ey )2

I Vertical part is composed of differences in height of “visited”
cuboids.

start

end

I There is a special case when going through a corner of four
cuboids.



Roof

I Shortest sum of horizontal paths ⇒ line segment form S to E
from the bird’s view perspective.

I Can be decomposed into horizontal and vertical part.

I Horizontal part is
√

(Sx − Ex)2 + (Sy − Ey )2

I Vertical part is composed of differences in height of “visited”
cuboids.

start

end

I There is a special case when going through a corner of four
cuboids.



Roof

I Shortest sum of horizontal paths ⇒ line segment form S to E
from the bird’s view perspective.

I Can be decomposed into horizontal and vertical part.

I Horizontal part is
√

(Sx − Ex)2 + (Sy − Ey )2

I Vertical part is composed of differences in height of “visited”
cuboids.

start

end

I There is a special case when going through a corner of four
cuboids.



Roof

I Shortest sum of horizontal paths ⇒ line segment form S to E
from the bird’s view perspective.

I Can be decomposed into horizontal and vertical part.

I Horizontal part is
√

(Sx − Ex)2 + (Sy − Ey )2

I Vertical part is composed of differences in height of “visited”
cuboids.

start

end

I There is a special case when going through a corner of four
cuboids.



Roof

I Shortest sum of horizontal paths ⇒ line segment form S to E
from the bird’s view perspective.

I Can be decomposed into horizontal and vertical part.

I Horizontal part is
√

(Sx − Ex)2 + (Sy − Ey )2

I Vertical part is composed of differences in height of “visited”
cuboids.

start

end

I There is a special case when going through a corner of four
cuboids.



Pickpockets

I As the blocks are being layed down horizontally, we ”convert”
the input into consecutive horizontal blocks which we will try
to fill.

I Now an easy ”brute-force” solution could be to to try all
permutations of blocks beginning on position of last block.

I This can be optimized by bit-mask dynamic programming:

I O(T2T + +HH)



Pickpockets

I As the blocks are being layed down horizontally, we ”convert”
the input into consecutive horizontal blocks which we will try
to fill.

I Now an easy ”brute-force” solution could be to to try all
permutations of blocks beginning on position of last block.

I This can be optimized by bit-mask dynamic programming:

I O(T2T + +HH)



Pickpockets

I As the blocks are being layed down horizontally, we ”convert”
the input into consecutive horizontal blocks which we will try
to fill.

I Now an easy ”brute-force” solution could be to to try all
permutations of blocks beginning on position of last block.

I This can be optimized by bit-mask dynamic programming:

I O(T2T + +HH)



Pickpockets

I As the blocks are being layed down horizontally, we ”convert”
the input into consecutive horizontal blocks which we will try
to fill.

I Now an easy ”brute-force” solution could be to to try all
permutations of blocks beginning on position of last block.

I This can be optimized by bit-mask dynamic programming:

I O(T2T + +HH)



Offices

I Task: Given a small initial graph G , simulate expansion of the
graph using the following operation multiple times:
I Pick an ordered pair of vertices q = (vi , vj) which do not share

an edge
I Create a new vertex vn+1 and connect it to each of the existing

vertices va according to the following table.

vj \vi ∅ O Q

∅ ∅ O Q

O Q ∅ O

Q O Q ∅

I The column specifies the type of connection that vi has to va,
the row specifies the type of connection that vj has to va and
the inner cell is the resulting type of connection that vn+1 will
have to va.

I After a new vertex is created, compute the sum of distances
of reachable vertices from vertex 0.



Offices
I Task: Given a small initial graph G , simulate expansion of the

graph using the following operation multiple times:
I Pick an ordered pair of vertices q = (vi , vj) which do not share

an edge
I Create a new vertex vn+1 and connect it to each of the existing

vertices va according to the following table.

vj \vi ∅ O Q

∅ ∅ O Q

O Q ∅ O

Q O Q ∅

I The column specifies the type of connection that vi has to va,
the row specifies the type of connection that vj has to va and
the inner cell is the resulting type of connection that vn+1 will
have to va.

I After a new vertex is created, compute the sum of distances
of reachable vertices from vertex 0.



Offices

I Suppose O = 1 and Q = 2. Then the operation is isomorphic
to subtraction in Z3.

vj \vi ∅ O Q

∅ ∅ O Q

O Q ∅ O

Q O Q ∅

vj \vi 0 1 2

0 0 1 2

1 2 0 1

2 1 2 0



Offices

I Consider the incidence matrix M ∈ Zn×n
3 of G . Note how the

operation extends M.
I The new row is a linear combination of the original rows.
I The condition that the detectives come from offices not

connected by a cable guarantees that we create no loops.

0 0

0 0

i j

i

j

0

0 0 0

0

i-j

i-j



Offices

I Therefore the row of every newly created vertex is a linear
combination of the first N ≤ 5 initial rows.

I The matrix has at most 3N different rows.

I Therefore at most 3N possible neighborhoods exist in the
graph.

I If two vertices have the same neighborhood, the shortest
paths to other vertices will not change
I The case when the neighborhood is equal to the one of v0

must be handled separately, as the paths start only from v0.

I After adding a vertex v with a new neighborhood, check if
some other vertex already has the same neighborhood.
I If another vertex vi already has the same neighborhood, to the

resulting sum of distances simply add the distance of vi
I Otherwise recalculate the shortest paths e.g. using Dijkstra’s

algorithm.



Offices

I To find the vertex with the same neighborhood, for each v
keep the track of coefficients αv ,1, · · · , αv ,N which determine
the linear combination of the initial N rows that results in the
row for v .

I The resulting complexity:

I We add a new neighborhood vertex at most 3N times, each
time recalculating the distances with complexity
O(32N log(3N)).

I The total complexity is O(27NN).

I With N ≤ 5 fits into the timelimit.



Bank

I Task: Choose a role and beat the judge in a game.

Given a tree graph (deg(v) 6= 2) decide which role to pick. Then:

I K detectives are placed on the tree by the defender.
I Each turn:

I Attacker announces which vertex of the tree is attacked.
I Defender moves each detective over at most one edge.
I If a detective is not present in the attacked vertex, then the

attacker wins.

I If the defender holds for 365 turns, then he wins.

Correct approach – threshold is: number of inner vertices +1

I DEFEND every inner vertex and 1 leaf

I ATTACK can propagate non-occupied inner vertex closer to the
leaves



Bank

I Task: Choose a role and beat the judge in a game.

Given a tree graph (deg(v) 6= 2) decide which role to pick. Then:

I K detectives are placed on the tree by the defender.
I Each turn:

I Attacker announces which vertex of the tree is attacked.
I Defender moves each detective over at most one edge.
I If a detective is not present in the attacked vertex, then the

attacker wins.

I If the defender holds for 365 turns, then he wins.

Correct approach – threshold is: number of inner vertices +1

I DEFEND every inner vertex and 1 leaf

I ATTACK can propagate non-occupied inner vertex closer to the
leaves



Bank

DEFEND every inner vertex and 1 leaf



Bank

DEFEND every inner vertex and 1 leaf



Bank

DEFEND every inner vertex and 1 leaf



Bank

DEFEND every inner vertex and 1 leaf



Bank

ATTACK can propagate non-occupied inner vertex closer to the
leaves



Bank

ATTACK can propagate non-occupied inner vertex closer to the
leaves



Bank

ATTACK can propagate non-occupied inner vertex closer to the
leaves



Bank

ATTACK can propagate non-occupied inner vertex closer to the
leaves



Bank

ATTACK can propagate non-occupied inner vertex closer to the
leaves



Bank

ATTACK can propagate non-occupied inner vertex closer to the
leaves



Bank

ATTACK can propagate non-occupied inner vertex closer to the
leaves



Bank

ATTACK can propagate non-occupied inner vertex closer to the
leaves



Bank

ATTACK can propagate non-occupied inner vertex closer to the
leaves



Bank

ATTACK can propagate non-occupied inner vertex closer to the
leaves



Bank

ATTACK can propagate non-occupied inner vertex closer to the
leaves



Bank

ATTACK can propagate non-occupied inner vertex closer to the
leaves



Bank

ATTACK can propagate non-occupied inner vertex closer to the
leaves



Bank

ATTACK can propagate non-occupied inner vertex closer to the
leaves



Bank

ATTACK can propagate non-occupied inner vertex closer to the
leaves



Screamers

I Task: You are given an array of edges in a graph, and a batch
of queries. Queries consist of intervals and for each interval
we need to find out the number of subarrays (within bounds
of the interval) of edges such that all the edges in the
subarray don’t form a cycle.

I Sadly there are far too many options to try out one by one.



Screamers

I Task: You are given an array of edges in a graph, and a batch
of queries. Queries consist of intervals and for each interval
we need to find out the number of subarrays (within bounds
of the interval) of edges such that all the edges in the
subarray don’t form a cycle.

I Sadly there are far too many options to try out one by one.



Screamers

I Firstly lets precompute for each possible start of the subarray
the farthest point where it might end so that there is no cycle
induced by the edges in the subarray (it is a valid subarray).
This is equal to the number of valid subarrays starting at the
given start.

I One of the ways how to do that is to use linked-cut-tree.

I Use two pointer technique, add edges one by one at the end
of the current interval and remove all edges at the beginning
while the edges induce a cycle.



Screamers

I Firstly lets precompute for each possible start of the subarray
the farthest point where it might end so that there is no cycle
induced by the edges in the subarray (it is a valid subarray).
This is equal to the number of valid subarrays starting at the
given start.

I One of the ways how to do that is to use linked-cut-tree.

I Use two pointer technique, add edges one by one at the end
of the current interval and remove all edges at the beginning
while the edges induce a cycle.



Screamers

I Secondly lets do a prefix sum on previous step’s result (the
number of valid intervals starting at each position).

I Finally for each query lets find such a position i such that all
the longest valid intervals starting after i end after the query’s
endpoint. All the subarrays that start up to i can be counted
using the previously mentioned prefix sum.

I The rest of the subarrays for the query is the number of
subarrays inside the interval starting at i + 1 and ending at
the query’s end.



Screamers

I Secondly lets do a prefix sum on previous step’s result (the
number of valid intervals starting at each position).

I Finally for each query lets find such a position i such that all
the longest valid intervals starting after i end after the query’s
endpoint. All the subarrays that start up to i can be counted
using the previously mentioned prefix sum.

I The rest of the subarrays for the query is the number of
subarrays inside the interval starting at i + 1 and ending at
the query’s end.



Art Transaction

I Chupakabra is considered an animal.



Art Transaction

I Chupakabra is considered an animal.



Art Transaction

I Task: Follow ”a few simple rules”.

I Watch out for tiny nuances.

I Rules ”House view up” and ”House view down” are almost
the same, except for used constant.

I On the other hand rules ”Drake/grill” and ”Grill/drake” are
almost the same, but not quite.

I The clarification request whether the ”House view up / down”
rules are meant to be the same were asked X times.



Art Transaction

I Task: Follow ”a few simple rules”.

I Watch out for tiny nuances.

I Rules ”House view up” and ”House view down” are almost
the same, except for used constant.

I On the other hand rules ”Drake/grill” and ”Grill/drake” are
almost the same, but not quite.

I The clarification request whether the ”House view up / down”
rules are meant to be the same were asked X times.



Art Transaction

I Task: Follow ”a few simple rules”.

I Watch out for tiny nuances.

I Rules ”House view up” and ”House view down” are almost
the same, except for used constant.

I On the other hand rules ”Drake/grill” and ”Grill/drake” are
almost the same, but not quite.

I The clarification request whether the ”House view up / down”
rules are meant to be the same were asked X times.



Art Transaction

I Task: Follow ”a few simple rules”.

I Watch out for tiny nuances.

I Rules ”House view up” and ”House view down” are almost
the same, except for used constant.

I On the other hand rules ”Drake/grill” and ”Grill/drake” are
almost the same, but not quite.

I The clarification request whether the ”House view up / down”
rules are meant to be the same were asked X times.



Art Transaction

I Task: Follow ”a few simple rules”.

I Watch out for tiny nuances.

I Rules ”House view up” and ”House view down” are almost
the same, except for used constant.

I On the other hand rules ”Drake/grill” and ”Grill/drake” are
almost the same, but not quite.

I The clarification request whether the ”House view up / down”
rules are meant to be the same were asked X times.



Thank you for participating!


