
CERC 2016: Presentation of solutions

University of Zagreb

A: Appearance Analysis
B: Bipartite Blanket
C: Convex Contour
D: Dancing Disks
E: Easy Equation
F: Free Figurines
G: Geohash Grid
H: Hangar Hurdles
I: Invisible Integers
J: Jazz Journey
K: Key Knocking
L: Lost Logic

Hard

Hard

Hard

Hard

Easy

Easy

Easy

Easy

Medium

Medium

Medium

Medium

Problem A
Appearance Analysis

Submits: 108
Accepted: at least 57

First solved by: Zagreb 1
University of Zagreb

(Balunović, Bradac, Tomić)
00:18:40

Author: Adrian Satja Kurdija

###
#...+#++++#+...#..+.#...+#++++#+...#..+.#
#..+.#.++.#.+..#..+.#..+.#.++.#.+..#..+.#
#.+..#....#..+.#..+.#.+..#....#..+.#..+.#
###
#.+..#....#..+.#.+..#.+..#....#..+.#.+..#
#..+.#.++.#.+..#.+..#..+.#.++.#.+..#.+..#
#...+#++++#+...#.+..#...+#++++#+...#.+..#
###

Detect windows size, locate windows, then either:
a) Compare each window pair to get a graph of

matching windows, and count the components in this
graph.

b) Find a canonical rotation for each window and insert
the canonical rotation into a set / hash set.

Problem K
Key Knocking

Submits: 224
Accepted: at least 29

First solved by: Zagreb 6
University of Zagreb

(Babojelić, Barišić, Šego)
00:34:55

Author: Luka Kalinovčić

3·n digit binary number.
The weight of the number is the number of groups of
consecutive zeroes and ones.

100011111000000010

100011111000000010

3·n digit binary number.
The weight of the number is the number of groups of
consecutive zeroes and ones.

weight = 6

3·n digit binary number.
In one move we can flip two consecutive bits.

100011111000000010

3·n digit binary number.
In one move we can flip two consecutive bits.

100011110100000010

3·n digit binary number.
In one move we can flip two consecutive bits.
The goal is to get a number with weight ≥ 2·n in at most
n moves.

weight = 8

100011110100000010

We start by analyzing the simple case where n = 1.
One move is always enough.
000 and 111 are the only cases with weight < 2, and any
move will do.

000 => 110 111 => 001

Assume we can solve any n - 1 instance.
Use n - 1 moves to solve the n - 1 instance, then use the
final move to increase the weight by at least 2 if
necessary.

...0 000 => ...0 110 ...1 000 => ...1 011

n - 1 n - 1

Assume we can solve any n - 1 instance.
Use n - 1 moves to solve the n - 1 instance, then use the
final move to increase the weight by at least 2 if
necessary.

...0 000 => ...0 110 ...1 000 => ...1 011

...0 001 => ...0 010 ...1 001 => ...1 001

n - 1 n - 1

Assume we can solve any n - 1 instance.
Use n - 1 moves to solve the n - 1 instance, then use the
final move to increase the weight by at least 2 if
necessary.

...0 000 => ...0 110 ...1 000 => ...1 011

...0 001 => ...0 010 ...1 001 => ...1 001

...0 010 => ...0 010 ...1 010 => ...1 010

...0 011 => ...0 101 ...1 011 => ...1 011

...0 100 => ...0 100 ...1 100 => ...1 010

...0 101 => ...0 101 ...1 101 => ...1 101

...0 110 => ...0 110 ...1 110 => ...1 101

...0 111 => ...0 100 ...1 111 => ...1 001

n - 1 n - 1

Problem F
Free Figurines

Submits: 157
Accepted: at least 50

First solved by: Jagiellonian 4
 Jagiellonian University in Krakow

(Derbisz, Łabaj, Stokowacki)
00:20:28

Author: Adrian Satja Kurdija

We can represent a configuration of matryoshka dolls as
a set of linked lists.
A link from node x to node y indicates that doll x
contains doll y.

4 3 1

7 5 2

6

4 3 1

7 5 2

6

An operation of opening a non-empty free figurine and
taking out the figurine inside corresponds to splitting the
head of the list from the rest of the list.

4

3 1

6

7 5 2

An operation of opening an empty figurine and placing a
free figurine inside corresponds to pushing a single node
to the beginning of the list.

4

3 1

6

7 5 2

4

3 1

6

7 5 2

Key observation: In every list in the initial configuration,
we can keep the longest tail that matches a tail in the
target configuration. We have to split off everything else.

4 3 1

7 5 2

6 4

3 1

6

7 5 2

We are left with a set of single-element lists (free dolls)
that we can simply join with the correct target list one by
one.
In every move we lose one list, we can simply add the
number of lists in the target configuration subtracted by
the number of lists in the current configuration.

4

3 1

7 5 2

6 4

3 1

6

7 5 2

Problem C
Convex Contours

Submits: 139
Accepted: at least 33

First solved by: UW2
University of Warsaw

(Dębowski, Radecki, Sommer)
00:42:47

Author: Luka Kalinovčić

Given a row of n simple shapes, find the length of
convex contour enclosing them.

Special case: Triangles only

Just output 2·n + 1

n - 1

n

11

Otherwise, contour touches both upper and lower line.
Algorithm:
1) Start with n by 1 rectangle.

Otherwise, contour touches both upper and lower line.
Algorithm:
1) Start with n by 1 rectangle.
2) Adjust the left part of the contour.

Otherwise, contour touches both upper and lower line.
Algorithm:
1) Start with n by 1 rectangle.
2) Adjust the left part of the contour.
3) Adjust the right part of the contour.

Otherwise, contour touches both upper and lower line.
Algorithm:
1) Start with n by 1 rectangle.
2) Adjust the left part of the contour.
3) Adjust the right part of the contour.

a) By reversing the sequence, and
b) Repeating 2)

Otherwise, contour touches both upper and lower line.
Algorithm:
1) Start with n by 1 rectangle.
2) Adjust the left part of the contour.
3) Adjust the right part of the contour.

a) By reversing the sequence, and
b) Repeating 2)

To adjust the left part of the contour, we analyze a few
cases.
1) Sequence starts with a square.

...

To adjust the left part of the contour, we analyze a few
cases.
1) Sequence starts with a square.
2) Sequence starts with a circle.

...

To adjust the left part of the contour, we analyze a few
cases.
1) Sequence starts with a square.
2) Sequence starts with a circle.
3) Sequence starts with triangles followed by a square.

... ...

To adjust the left part of the contour, we analyze a few
cases.
1) Sequence starts with a square.
2) Sequence starts with a circle.
3) Sequence starts with triangles followed by a square.
4) Sequence starts with triangles followed by a circle.

...

To adjust the left part of the contour, we analyze a few
cases.
1) Sequence starts with a square.
2) Sequence starts with a circle.
3) Sequence starts with triangles followed by a square.
4) Sequence starts with triangles followed by a circle.

...α
β

Problem L
Lost Logic

Submits: 26
Accepted: at least 3

First solved by: UW1
University of Warsaw

(Nadara, Smulewicz, Sokołowski)
02:27:14

Author: Ivan Katanić, Gustav Matula

1 0 1 0 0 1 1 0 1
0 0 1 0 0 1 1 1 0
1 0 0 0 1 0 1 0 1

x1 x2 x3 x4 x5 x6 x7 x8 x9 x1 -> x2
!x3 -> x9
x1 -> !x3
...

Given a set of boolean variables, we need to
find a set of implications such that exactly
three given assignments evaluate to true,
and every other assignment evaluates to
false.

1 0 1 0 0 1 1 0 1
0 0 1 0 0 1 1 1 0
1 0 0 0 1 0 1 0 1

x1 x2 x3 x4 x5 x6 x7 x8 x9

Step one: fix constants.
x2 == 0
x4 == 0
x7 == 1

x2 -> !x2
x4 -> !x4
!x7 -> x7

1 0 1 0 0 1 1 0 1
0 0 1 0 0 1 1 1 0
1 0 0 0 1 0 1 0 1

x1 x2 x3 x4 x5 x6 x7 x8 x9 x2 -> !x2
x4 -> !x4
!x7 -> x7
x1 -> x9
x9 -> x1
x3 -> x6
x6 -> x3

Step two: find equivalent variables.
x1 == x9, x3 == x6

We can fix two variables to always be equal
using two implications.

1 0 1 0 0 1 1 0 1
0 0 1 0 0 1 1 1 0
1 0 0 0 1 0 1 0 1

x1 x2 x3 x4 x5 x6 x7 x8 x9 x2 -> !x2
x4 -> !x4
!x7 -> x7
x1 -> x9
x9 -> x1
x3 -> x6
x6 -> x3
x1 -> !x8
!x8 -> x1
x3 -> !x5
!x5 -> x3

Step two: find equivalent variables.
x1 == x9, x3 == x6

We can fix two variables to always be equal
using two implications.
We can do the same for two variables where
one is a negation of the other.
x1 != x8, x3 != x5

1 0 1 0 0 1 1 0 1
0 0 1 0 0 1 1 1 0
1 0 0 0 1 0 1 0 1

x1 x2 x3 x4 x5 x6 x7 x8 x9 x2 -> !x2
x4 -> !x4
!x7 -> x7
x1 -> x9
x9 -> x1
x3 -> x6
x6 -> x3
x1 -> !x8
!x8 -> x1
x3 -> !x5
!x5 -> x3
!x1 -> x3

We are left with two or three free variables,
everything else is fixed once we assign
them.
If there are two free variables, we have four
valid assignments left. We just need to find
the right last implication to get rid of the
fourth assignment.

1 1 1
0 0 1
1 0 0

x1 x2 x3

If there are three free variables, we have
eight valid assignments left.
However, it is impossible to find a set of
implications that eliminates five out of eight,
no matter what the configuration is.

Problem J
Jazz Journey

Submits: 82
Accepted: at least 13

First solved by: UW2
University of Warsaw

(Dębowski, Radecki, Sommer)
01:05:25

Author: Ivan Katanić

1

2

3

4

2

3

4

5

1 7

9

6

8

1 2 O 20
1 2 R 10
1 3 R 1
3 1 R 10
2 3 O 5
2 3 R 20
3 2 O 5
2 4 O 10
4 1 O 10

One-way ticket a b: can be used to fly from a to b
once (but not in the opposite direction).
Round trip ticket a b: can be used to fly once from a
to b, and once from b to a. The return segment
(from b to a) does not need to be used.

1

2

3

4

2

3

4

5

1 7

9

6

8

1 2 O 20
1 2 R 10
1 3 R 1
3 1 R 10
2 3 O 5
2 3 R 20
3 2 O 5
2 4 O 10
4 1 O 10

Observation: We can look at each pair of cities
independently from one another.

A B

We can encode flights between a pair of cities as a
string of letters X and Y, where X represents a flight
from A to B, and Y represents a flight from B to A.

X

Y

X

X

Y

X

XYXXYYXXXYYYXXXXYXYY

Let cX be the cheapest flight to get from A to B.
Let cy be the cheapest flight to get from B to A.
We can also use the first leg of a round trip here if it
is has a lower cost than one-way trip.
Let cXY be the cheapest round trip from A to B to A.
Let cYX be the cheapest round trip from B to A to B.

The problem of buying flight tickets now becomes a
problem of eliminating characters from the string for
a given cost:
cX to eliminate a single character X, cXY to eliminate
characted X and character Y that appears
anywhere after it, etc.

XYXXYYXXXYYYXXXXYXYY

We can choose A and B such that cXY ≤ cYX (swap
A and B if needed).
Now there are just three cases to consider:
1) cX + cY ≤ cXY ≤ cYX
The best strategy is to buy one-way tickets only, i.e.
only eliminate single characters from the string for a
cost of cX or cY per character.

XYXXYYXXXYYYXXXXYXYY

2) cXY ≤ cX + cY ≤ cYX
The best strategy is to eliminate as many XY pairs
as possible before we start eliminating single
characters.

We use a greedy algorithm to find the maximum
number of XY pairs we can eliminate. Pick first X,
and first Y that follows and eliminate for a cost of
cXY.
Eliminate what’s left for a cost of cX or cY per
character.

XYXXYYXXXYYYXXXXYXYY

3) cXY ≤ cYX ≤ cX + cY
The best strategy is to eliminate as many XY pairs
as possible, and then as many YX pairs as
possible.

As before, we use a greedy algorithm to find the
maximum number of XY pairs we can eliminate.
We are left with a string that looks like YY...YXX..X
As long as there are both Y’s and X’s in the string,
eliminate YX pairs for a cost of cYX.
Eliminate what’s left for a cost of cX or cY per
character.

Problem H
Hangar Hurdles

Submits: 68
Accepted: at least 17

First solved by: UWr1
University of Wroclaw

(Łowicki, Michalak, Syposz)
01:36:45

Author: Luka Kalinovčić

Given a bunch of cell pairs, how big of a crate can
we move freely from one cell to the other?

1 1 1 1 1 0 1

1 3 1 0 1 0 1

1 3 1 1 0 1 1

1 3 3 1 0 0 0

1 1 3 1 0 1 1

0 1 3 1 1 1 1

1 1 1 1 1 1 1

First step: For each cell, find the size of the biggest
crate that can be centered at that cell.
Dynamic programming or flood-fill starting from
blocked cells.

50 5 25 0

20 0 60 70

90 15 30 0

80 0 65 45

We can generalize the problem:
In a matrix of numbers find a path from one cell to
the other such that the smallest number on the path
is as high as possible.

50 5 25 0

20 0 60 70

90 15 30 0

80 0 65 45

We sort cells by numbers decreasingly, and we
build the tree by adding nodes in order, and
connecting subtrees of neighbouring cells.

50 5 25 0

20 0 60 70

90 15 30 0

80 0 65 45

We sort cells by numbers decreasingly, and we
build the tree by adding nodes in order, and
connecting subtrees of neighbouring cells.

50 5 25 0

20 0 60 70

90 15 30 0

80 0 65 45

We sort cells by numbers decreasingly, and we
build the tree by adding nodes in order, and
connecting subtrees of neighbouring cells.

50 5 25 0

20 0 60 70

90 15 30 0

80 0 65 45

We sort cells by numbers decreasingly, and we
build the tree by adding nodes in order, and
connecting subtrees of neighbouring cells.

50 5 25 0

20 0 60 70

90 15 30 0

80 0 65 45

We sort cells by numbers decreasingly, and we
build the tree by adding nodes in order, and
connecting subtrees of neighbouring cells.

50 5 25 0

20 0 60 70

90 15 30 0

80 0 65 45

We sort cells by numbers decreasingly, and we
build the tree by adding nodes in order, and
connecting subtrees of neighbouring cells.

50 5 25 0

20 0 60 70

90 15 30 0

80 0 65 45

We sort cells by numbers decreasingly, and we
build the tree by adding nodes in order, and
connecting subtrees of neighbouring cells.

50 5 25 0

20 0 60 70

90 15 30 0

80 0 65 45

We sort cells by numbers decreasingly, and we
build the tree by adding nodes in order, and
connecting subtrees of neighbouring cells.

50 5 25 0

20 0 60 70

90 15 30 0

80 0 65 45

We sort cells by numbers decreasingly, and we
build the tree by adding nodes in order, and
connecting subtrees of neighbouring cells.

50 5 25 0

20 0 60 70

90 15 30 0

80 0 65 45

We sort cells by numbers decreasingly, and we
build the tree by adding nodes in order, and
connecting subtrees of neighbouring cells.

50 5 25 0

20 0 60 70

90 15 30 0

80 0 65 45

We sort cells by numbers decreasingly, and we
build the tree by adding nodes in order, and
connecting subtrees of neighbouring cells.

50 5 25 0

20 0 60 70

90 15 30 0

80 0 65 45

We sort cells by numbers decreasingly, and we
build the tree by adding nodes in order, and
connecting subtrees of neighbouring cells.

50 5 25 0

20 0 60 70

90 15 30 0

80 0 65 45

A unique path between two cells in our tree is the
optimal path.

The minimum number on the path is found at the
lowest common ancestor of two nodes in the tree.

Problem D
Dancing Disks

Submits: 5
Accepted: at least 1

First solved by: UW1
University of Warsaw

(Nadara, Smulewicz, Sokołowski)
03:46:41

Author: Luka Kalinovčić

36 rods organized in 6 rows and 6 columns.

The puzzle starts with n disks stacked in arbitrary
order on the rod in the upper-left corner.

In each step, a player can pick up a stack of one or
more disks and transfer them to the top of the rod
immediately below or to the right.

Find any sequence of moves that moves disks to
the rod in the lower-right corner, such that disks are
sorted by size.

Let’s describe a simple solution for a R x C matrix
of rods that can sort R·C - 1 disks.

First, we go through disks one by one, and move
each disk to a separate rod, with the largest disk at
the target rod in the lower-right corner.

[1-15]
shuffled 3 2 1

7 6 5 4

8 10 12 13

9 11 14 15

Second, we move disks one by one to the target
rod, in order of decreasing size.

3 2 1

7 6 5 4

8 10 12 13

9 11 14 15 [15-1]
sorted

The algorithm is wasteful because it only moves
single disks to each rod.
For example, our algorithm is able to sort 3·4 - 1 =
11 disks using the 3 x 4 matrix of rods. So we could
have as well assigned disks to rods as above.

[1-15]
shuffled

[3-13]
shuffled 2 1

14

15

In the second step, we recursively use the same
algorithm to move a sequence of consecutive
unsorted disks to the final rod.

[3-13]
shuffled 2 1

14

15

[3-13]
shuffled 2 1

[15-14]
sorted

In the second step, we recursively use the same
algorithm to move a sequence of consecutive
unsorted disks to the final rod.

[3-13]
shuffled 2 1

[15-14]
sorted

2, 4 1, 3

5 6 7

8 9 10

11 12 [15-13]
sorted

In the second step, we recursively use the same
algorithm to move a sequence of consecutive
unsorted disks to the final rod.
Note that we don’t mind if there are already disks at
rods we use in the recursive call. We won’t touch
them.

2, 4 1, 3

5 6 7

8 9 10

11 12 [15-13]
sorted

2 1

[15-3]
sorted

In the second step, we recursively use the same
algorithm to move a sequence of consecutive
unsorted disks to the final rod.
Note that we don’t mind if there are already disks at
rods we use in the recursive call. We won’t touch
them.

2 1

[15-3]
sorted

[15-1]
sorted

We come up with a revised algorithm where we go
one by one through the first rod, and move disks to
other rods such that disks on each rod have
consecutive sizes (but may be shuffled).
We’ll move as many disks to a rod as this algorithm
can successfully handle.
But how much is that?

[1-100]
shuffled

[1-30]
shuffled

[81-90]
shuffled

[31-60]
shuffled

[61-80]
shuffled

[91-99]
shuffled

100

Let k(R, C) be the maximum number of disks we can
sort with a matrix or R by C rods, using the described
algorithm.
k(1, 1) = 1
k(R, C) = ∑(k(r, c), 1 ≤ r ≤ R, 1 ≤ c ≤ C, r ≠ R or c ≠ C)

k(1, 1) = 1
k(R, C) = ∑(k(r, c), 1 ≤ r ≤ R, 1 ≤ c ≤ C, r ≠ R or c ≠ C)

We can only sort 26928 disks using this algorithm.

1 1 2 4 8 16

1 3 8 20 48 112

2 8 26 76 208 544

4 20 76 252 768 2208

8 48 208 768 2568 8016

16 112 544 2208 8016 26928

Luckily, we can just add custom logic to handle 2 disks
on 2 x 1 matrix of rods.
k(1, 1) = 1, k(1, 2) = 2, k(2, 1) = 2
k(R, C) = ∑(k(r, c), 1 ≤ r ≤ R, 1 ≤ c ≤ C, r ≠ R or c ≠ C)

k(6, 6) = 42960 ✓

1 2 3 6 12 24

2 5 13 32 76 176

3 13 42 122 323 864

6 32 122 404 1228 3520

12 76 332 1228 4104 12792

24 176 864 3520 12792 42960

Problem E
Easy Equation

Submits: 13
Accepted: at least 3

First solved by: UW3
University of Warsaw

(Hołubowicz, Paluszek, Tabaszewsk)
01:40:17

Author: Luka Kalinovčić

a2 + b2 + c2 = k·(a·b + b·c + c·a) + 1

Given k ≥ 2, find n solutions to the equation such that:
● a, b and c are positive integers, and
● we only use a number once across all n solutions.

a2 + b2 + c2 = k·(a·b + b·c + c·a) + 1

Let’s find any solution. Try a = 0, b = 1:
02+ 12 + c2 = k (0·1 + 1·c + c·0) + 1
c2 = k·c
c = k
(0, 1, k) is always a solution.

a2 + b2 + c2 = k·(a·b + b·c + c·a) + 1

Key idea: Is there another solution if we keep two out of
three numbers? We fix b and c, and solve for a.
a2 - a·(k·b + k·c) + b2 + c2 - k·b·c - 1 = 0

We can compute the derivative to find the vertex of this
parabola at (k·b + k·c) / 2.
We can also find the vertex as arithmetic mean of two
solutions. (a’ + a’’) / 2 = (k·b + k·c) / 2

a’’ = k·b + k·c - a’

a2 + b2 + c2 = k·(a·b + b·c + c·a) + 1

Given a solution (a, b, c) we can find another three
solutions:
(k·b + k·c - a, b, c)
(a, k·a + k·c - b, c)
(a, b, k·a + k·b - c)

We use BFS to explore this infinite graph of solutions
starting from (0, 1, k). Only output solutions with unique
positive integers we haven’t used so far.

Problem B
Bipartite Blanket

Submits: 11
Accepted: at least 5

First solved by: UW2
University of Warsaw

(Dębowski, Radecki, Sommer)
02:28:59

Author: Gustav Matula

1

3

2

8

13

5

A set of nodes V is valid if there exists a matching M
such that every node is an endpoint of at least one edge
in M.

1

3

2

8

13

5

A set of nodes V is valid if there exists a matching M
such that every node is an endpoint of at least one edge
in M.
Set {1, 2, 5} is valid.

1

3

2

8

13

5

A set of nodes V is valid if there exists a matching M
such that every node is an endpoint of at least one edge
in M.
Set {1, 2, 5} is valid.
Set {2, 3, 8, 13} is not valid.

1

3

2

8

13

5

A set of nodes V is valid if there exists a matching M
such that every node is an endpoint of at least one edge
in M.
Set {1, 2, 5} is valid.
Set {2, 3, 8, 13} is not valid.
We need to count the number of valid sets with sum of
node weights greater than a given threshold t.

1

3

2

8

13

5

Hall’s marriage theorem gives a necessary and sufficient
condition for existence of a matching that covers a set of
nodes on one side of the graph.

1

3

2

8

13

5

For a set of vertices A on one side of the graph, let N(A)
denote the neighborhood of A in G, i.e. the set of all
vertices on the other side of the graph adjacent to some
element of A.
There is a matching that blankets A iff |x| ≤ |N(x)|, for
every subset x of A.

1

3

2

8

13

5

Iterating through all subsets of nodes on one side and
applying the Hall’s theorem, we can find which ones are
valid in O(n·2n).

1

3

2

8

13

5

Key observation: Given a valid set A of nodes on one
side, and a valid set B of nodes on the other side of the
graph, set A ∪ B is valid as well.

3

2

8

13

5

Proof sketch: We take a minimal matching MA that
covers A, and a minimal matching MB that covers B, and
we build a directed graph D, where we:
● add a directed edge from (a, b) if edge (a, b) is in MA.
● add a directed edge from (b, a) if edge (b, a) is in MB.

3

2

8

13

5

Every node in D has an out-degree of 1 if node is in A or
B or 0 otherwise, so it consists of paths and/or cycles.
We create a matching covering both A and B by taking
every second edge on each cycle and path.
The matching covers every node of D, except for nodes
at the end of even-length paths. However, a node at the
end of a path has a degree of 0, so it is not in A or B.

The problem of counting valid subsets with a weight
greater than t, is reduced to a standard problem of
counting the number of ways to select two numbers x
and y, one from set X, other from set Y, such that
x + y > t.

X = {5, 10, 15, 20, 30}

Y = {10, 20, 25, 40}

t = 45

We can solve that by using two pointers. The first one
runs on X in increasing order, while the second runs on
Y in decreasing order.

If the sum of the two numbers is greater than the
threshold, we move the pointer in Y, otherwise we move
the pointer in X.

X = {5, 10, 15, 20, 30}

Y = {10, 20, 25, 40}

t = 45

We can solve that by using two pointers. The first one
runs on X in increasing order, while the second runs on
Y in decreasing order.

If the sum of the two numbers is greater than the
threshold, we move the pointer in Y, otherwise we move
the pointer in X.

X = {5, 10, 15, 20, 30}

Y = {10, 20, 25, 40}

t = 45

We can solve that by using two pointers. The first one
runs on X in increasing order, while the second runs on
Y in decreasing order.

If the sum of the two numbers is greater than the
threshold, we move the pointer in Y, otherwise we move
the pointer in X.

X = {5, 10, 15, 20, 30}

Y = {10, 20, 25, 40}

t = 45

We can solve that by using two pointers. The first one
runs on X in increasing order, while the second runs on
Y in decreasing order.

If the sum of the two numbers is greater than the
threshold, we move the pointer in Y, otherwise we move
the pointer in X.

X = {5, 10, 15, 20, 30}

Y = {10, 20, 25, 40}

t = 45

We can solve that by using two pointers. The first one
runs on X in increasing order, while the second runs on
Y in decreasing order.

If the sum of the two numbers is greater than the
threshold, we move the pointer in Y, otherwise we move
the pointer in X.

X = {5, 10, 15, 20, 30}

Y = {10, 20, 25, 40}

t = 45

We can solve that by using two pointers. The first one
runs on X in increasing order, while the second runs on
Y in decreasing order.

If the sum of the two numbers is greater than the
threshold, we move the pointer in Y, otherwise we move
the pointer in X.

X = {5, 10, 15, 20, 30}

Y = {10, 20, 25, 40}

t = 45

We can solve that by using two pointers. The first one
runs on X in increasing order, while the second runs on
Y in decreasing order.

If the sum of the two numbers is greater than the
threshold, we move the pointer in Y, otherwise we move
the pointer in X.

X = {5, 10, 15, 20, 30}

Y = {10, 20, 25, 40}

t = 45

We can solve that by using two pointers. The first one
runs on X in increasing order, while the second runs on
Y in decreasing order.

If the sum of the two numbers is greater than the
threshold, we move the pointer in Y, otherwise we move
the pointer in X.

X = {5, 10, 15, 20, 30}

Y = {10, 20, 25, 40}

t = 45

Problem G
Geohash Grid

Submits: 3
Accepted: ?

Author: Ante Đerek, Luka Kalinovčić

21 23 29 31 53 55 61 63

20 22 28 30 52 54 60 62

17 19 25 27 49 51 57 59

16 18 24 26 48 50 56 58

5 7 13 15 37 39 45 47

4 6 12 14 36 38 44 46

1 3 9 11 33 35 41 43

0 2 8 10 32 34 40 42

Given an axis-parallel polygon in a grid of size 2n by 2n,
find the best k-approximation using k intervals of
numbers that completely cover the polygon.

21 23 29 31 53 55 61 63

20 22 28 30 52 54 60 62

17 19 25 27 49 51 57 59

16 18 24 26 48 50 56 58

5 7 13 15 37 39 45 47

4 6 12 14 36 38 44 46

1 3 9 11 33 35 41 43

0 2 8 10 32 34 40 42

The optimal 1-approximation: 3−37.

21 23 29 31 53 55 61 63

20 22 28 30 52 54 60 62

17 19 25 27 49 51 57 59

16 18 24 26 48 50 56 58

5 7 13 15 37 39 45 47

4 6 12 14 36 38 44 46

1 3 9 11 33 35 41 43

0 2 8 10 32 34 40 42

The optimal 2-approximation: 3−29, 33−37.

21 23 29 31 53 55 61 63

20 22 28 30 52 54 60 62

17 19 25 27 49 51 57 59

16 18 24 26 48 50 56 58

5 7 13 15 37 39 45 47

4 6 12 14 36 38 44 46

1 3 9 11 33 35 41 43

0 2 8 10 32 34 40 42

The optimal 3-approximation: 3−25, 28−29, 33−37.

21 23 29 31 53 55 61 63

20 22 28 30 52 54 60 62

17 19 25 27 49 51 57 59

16 18 24 26 48 50 56 58

5 7 13 15 37 39 45 47

4 6 12 14 36 38 44 46

1 3 9 11 33 35 41 43

0 2 8 10 32 34 40 42

If we lay down numbers on a single line and mark
numbers within the polyline, the optimal 1-approximation
is simply the interval that covers every marked number.

21 23 29 31 53 55 61 63

20 22 28 30 52 54 60 62

17 19 25 27 49 51 57 59

16 18 24 26 48 50 56 58

5 7 13 15 37 39 45 47

4 6 12 14 36 38 44 46

1 3 9 11 33 35 41 43

0 2 8 10 32 34 40 42

We obtain the optimal 2-approximation by removing the
largest gap.

21 23 29 31 53 55 61 63

20 22 28 30 52 54 60 62

17 19 25 27 49 51 57 59

16 18 24 26 48 50 56 58

5 7 13 15 37 39 45 47

4 6 12 14 36 38 44 46

1 3 9 11 33 35 41 43

0 2 8 10 32 34 40 42

We obtain the optimal k-approximation by removing
(k − 1) largest gaps.

We can find all gaps recursively if we return the first and
the last marked number in the viewport.
At every stage, there is a potential gap between the last
marked number returned by the first branch, and the first
marked number returned by the second branch.

first branch second branch

new gap

There can be billions of gaps, so we can’t find them all
one by one.
However, there is only a limited number of gap sizes that
can occur, i.e. the histogram of gaps would contain a
small number of very tall columns.

new gap

Key observation: Given a polygon with m vertices and
an arbitrary rectangular tiling of a plane, there are at
most O(m) different tiles with respect to intersection with
the polygon.

Proof sketch:
Color every tile containing a vertex red.
Color every tile adjacent to a red tile blue.
Any other tile looks like one of the blue tiles.

In our recursive algorithm, we effectively tile the plane
2·n times with different rectangle sizes.
Because a viewport of a given size can intersect with
polygon in O(m) different ways, we can only get O(n·m)
different gap sizes.

Finally, we’ll revise our gap-finding algorithm, not to visit
both children when the split would result in two tiles that
look the same with respect to intersecting with the
polygon. Instead we visit only one children, but create
twice as many gaps in that branch.

It can be shown that this way we’ll only visit O(n·m2)
states. We have to look at the polygon through the
viewport at every state to determine whether to split, so
we have a total complexity of O(n·m3) to find all gaps.

We can then find (k − 1) largest gaps in O(log n·m).

Problem I
Invisible Integers

Submits: 2
Accepted: ?

Author: Luka Kalinovčić

1 2 1 4 1 3 4

Hidden sequence of integers 1 through 9.
A hint is a sequence obtained as follows:
● An arbitrary starting position is chosen in the

hidden sequence.

1 2 1 4 1 3 4

Hidden sequence of integers 1 through 9.
A hint is a sequence obtained as follows:
● An arbitrary starting position is chosen in the

hidden sequence.
● An arbitrary direction is chosen — either left or

right.

1 2 1 4 1 3 4

Hidden sequence of integers 1 through 9.
A hint is a sequence obtained as follows:
● An arbitrary starting position is chosen in the

hidden sequence.
● An arbitrary direction is chosen — either left or

right.
● Traverse integers of the hidden sequence in the

chosen direction, appending an integer only the
first time we see it.

1 4 3

1 2 1 4 1 3 4

Hidden sequence of integers 1 through 9.
A hint is a sequence obtained as follows:
● An arbitrary starting position is chosen in the

hidden sequence.
● An arbitrary direction is chosen — either left or

right.
● Traverse integers of the hidden sequence in the

chosen direction, appending an integer only the
first time we see it.

3 1 4 2

1 2 1 4 1 3 4

Hidden sequence of integers 1 through 9.
A hint is a sequence obtained as follows:
● An arbitrary starting position is chosen in the

hidden sequence.
● An arbitrary direction is chosen — either left or

right.
● Traverse integers of the hidden sequence in the

chosen direction, appending an integer only the
first time we see it.

Given n hints, find the shortest hidden sequence!

For now, we assume all hints go right.

Given two hints x and y, we say that y follows x, if
y’s starting position is after x’s starting position.

? ? ? ? ? ? ? ? ? ?
x y

For now, we assume all hints go right.

Given two hints x and y, we say that y follows x, if
y’s starting position is after x’s starting position.

Hint y cannot follow hint x iff y contains a digit not
contained in x.

? ? ? ? ? ? ? ? ? ?

1 2 3

3 9x y

We say hint x is able to transition into y at index i, if:
● x has found i digits up to y’s starting position,
● y can follow x, and
● digits found by hint x after y’s starting position

appear in the same relative order in hint y.

? ? ? ? ? ? ? ? ? ?

1 2 3 4 5

3 2 4 1 5 x y

We say hint x is able to transition into y at index i, if:
● x has found i digits up to y’s starting position,
● y can follow x, and
● digits found by hint x after y’s starting position

appear in the same relative order in hint y.

? ? ? ? ? ? ? ? ? ?

1 2 3 4 5

3 2 4 1 5 x y

Key observation: When x transitions into y, no
matter what integer sequence we find that
generates a given hint y, it will also complete hint x.

This leads to a dynamic programming solution:
We build the sequence left to right.
At a given state we only care about:
● Current hint - the last hint we’ve transitioned into.
● The index in the current hint - how many digits in

that hint we’ve found already.
● Unused - bitmask of hints we have yet to

transition into.

1 3 1 2 1 ? ? ? ? ?

3 1 2 8 9

We try every digit that doesn’t contradict the current
hint. 1, 2, 3 and 8 are valid digits to continue the
current hint.

1 3 1 2 1 ? ? ? ? ?

3 1 2 8 9

We try every digit that doesn’t contradict the current
hint. 1, 2, 3 and 8 are valid digits to continue the
current hint.

1 3 1 2 1 8 ? ? ? ?

3 1 2 8 9

We try every digit that doesn’t contradict the current
hint. 1, 2, 3 and 8 are valid digits to continue the
current hint.
We also need to try to transition into hints we have
yet to start.

1 3 1 2 1 ? ? ? ? ?

3 1 2 8 9

8 1 9 2

We try every digit that doesn’t contradict the current
hint. 1, 2, 3 and 8 are valid digits to continue the
current hint.
We also need to try to transition into hints we have
yet to start.

1 3 1 2 1 8 ? ? ? ?

3 1 2 8 9

8 1 9 2

We try every digit that doesn’t contradict the current
hint. 1, 2, 3 and 8 are valid digits to continue the
current hint.
We also need to try to transition into hints we have
yet to start. We can forget about the old hint, it will
be completed by our new hint.

1 3 1 2 1 8 ? ? ? ?

8 1 9 2

Finally, we reintroduce hints running left. Similar
ideas apply, but we need to think in reverse.
We build a DP solution that keeps track:
● Right hint - the current hint running right.
● The index in the right hint - how many leading

digits in that hint we’ve found already.
● Left hint - the current hint running left.
● The index in the left hint - how many trailing

digits in that hint will be found in the part of the
sequence that we’ve already built.

● Unused - bitmask of unused hints.

1 3 1 2 1 8 ? ? ? ?

1 4 3 2

8 1 9 2

Details left as an excercise :)

Complexity: O(2n·n2·max_digit2·(n + max_digit))

1 3 1 2 1 8 ? ? ? ?

1 4 3 2

Thanks!

