Problem B: Mountainous landscape

You travel through a scenic landscape consisting mostly of mountains - there are n landmarks (peaks and valleys) on your path. You pause for breath and wonder: which mountain are you currently seeing on the horizon?

Formally: you are given a polygonal chain $P_{1} P_{2} \ldots P_{n}$ in the plane. The x coordinates of the points are in strictly increasing order. For each segment $P_{i} P_{i+1}$ of this chain, find the smallest index $j>i$, for which any point of $P_{j} P_{j+1}$ is visible from $P_{i} P_{i+1}$ (lies strictly above the ray $\left.P_{i} P_{i+1}\right)$.

Input

The first line of input contains the number of test cases T. The descriptions of the test cases follow:

The first line of each test case contains an integer $n(2 \leqslant n \leqslant 100000)$ - the number of vertices on the chain.

Each of the following n lines contains integer coordinates x_{i}, y_{i} of the vertex $P_{i}\left(0 \leqslant x_{1}<\right.$ $x_{2}<\ldots<x_{n} \leqslant 10^{9} ; 0 \leqslant y_{i} \leqslant 10^{9}$).

Output

For each test case, output a single line containing $n-1$ space-separated integers. These should be the smallest indices of chain segments visible to the right, or 0 when no such segment exists.

Example

For an example input	the correct answer is
2 8 0 0 3 7 6 2 9 4 11 2 13 3 17 13 20 7 7 0 2 1 2 3 1 4 0 5 2 6 1 7 3	$\begin{array}{lllllll} \hline 0 & 3 & 6 & 5 & 6 & 0 & 0 \\ 6 & 4 & 4 & 0 & 6 & 0 & \\ \hline \end{array}$

